广告

英特尔AI团队研发智能脊柱接口,让瘫痪者站起来!

2019-10-11 17:09:40 Sally Ward-Foxton,EE Times欧洲特派记者 阅读:
美国布朗大学、英特尔、罗得岛医院和Micro-Leads Medical的工程师与神经科学家正连手开发基于AI技术的智能脊柱接口,期望协助脊髓损伤患者重建其肢体功能...

为了协助脊髓损伤患者重建其肢体功能和膀胱控制,最新一项新的研究计划将致力于开发利用人工智能(AI)技术的“智能脊柱接口”(intelligent spine interface)。MTcednc

这项研究计划是由美国布朗大学(Brown University)、英特尔(Intel)、罗得岛医院(Rhode Island Hospital)和Micro-Leads Medical的工程师与神经科学家携手进行,并已获得美国先进研究计划署(DARPA)约630万美元的资助。MTcednc

在这项研究中,研究人员将为脊髓受伤的患者嵌入电极于其伤部上方和下方的脊柱。透过AI系统执行以生物启发的神经网络,“监听”并学习运动和感官等讯号的含义,目标在于以电子方式重新连接脊柱的两个部分。MTcednc

MTcednc

“智能脊柱接口”研究计划将记录并分析脊髓损伤患者脊柱中的运动和感官讯号(来源:Intel)MTcednc

该计划基础建立在脑机接口(BCI)领域中持续进行中的研究,以控制外部效应器。这些研究包括成功与大脑连接以控制计算机鼠标甚至机器人肢体的BrainGate项目,以及有关脑-脊柱接口和脊柱刺激的其他国际性研究计划。MTcednc

布朗大学工程学院助理教授暨该校脑科学研究所研究员David Borton主导了这项研究计划。MTcednc

Borton说:“这项计划的特点在于我们其实是想与脊髓展开对话。我们并不只是想要刺激它或与其交谈,还希望能够聆听并学会从脊髓中提取有用的讯号,并利用它们来驱动脊髓刺激。”MTcednc

研究人员将记录患者受伤部位上方脊柱区域的讯号,然后使用机器学习针对目前尚不完全了解的讯号进行译码,并研究如何最有效加以运用。其想法在于将这些讯号施加到脊柱的下方,以期激发正确的反应。MTcednc

电子系统

布朗大学、英特尔与罗得岛医院展开合作,利用该医院中监测癫痫患者大脑的研究作为开发基础。罗得岛医院的外科医生将会在患者受伤部位的任何一侧植入一对电极数组,由于患者的损伤类型各不相同,因此这项任务特别困难。医院还为此计划专门打造了一个提供复健设备的空间。MTcednc

20191010-101.jpgMTcednc

该计划中将使用的电极数组示例,例如来自Micro-Leads Medical的电极数组(来源:Brown University)MTcednc

实体植入物将采用由Micro-Leads开发的高分辨率脊髓刺激技术,称为HD64。该计划的第一阶段将使用24个触点的电极数组,到了第二阶段则将使用64个触点的电极数组。该触点的大小约为1平方毫米,并且由于神经元约为20微米,因此每个电极将一次记录或刺激数十万个神经元。待记录的讯号是电讯号;而当神经元彼此通讯时,电压发生变化,电极将会感应并记录电场的变化。MTcednc

研究人员期待“听到”哪些讯号?

“这是研究中令人振奋之处。通常,讯号中存在不同的频段,分别代表不同的基本神经元突起。因此,这可以为我们提供有关实际情况的线索。”英特尔AI产品事业部首席工程师Hanlin Tang说,“但是,在机器学习方面还有许多工作要做,才能好好地诠释这些讯号,以及了解在另一端要刺激什么。”Hanlin Tang本身就是神经科学家,目前在英特尔负责这项合作研究计划。MTcednc

英特尔的团队将利用其硬件和机器学习方面的专业知识来协助打造可诠释讯号的AI系统。MTcednc

Tang说:“目前面对的主要挑战是在倾听脊柱时无法达到够高的传真度。这就像试图中继一条讯息,但只能听到另一侧提到的几句话。透过机器学习,或许就可以使用一些先验知识来尝试填补差距,并成为重建此类损伤的理想接口。”MTcednc

AI还将处理两个电极数组之间(从损伤部位的一侧到另一侧)的映射¬¬——这确实是一项至关重要的任务。MTcednc

20191010-102.jpgMTcednc

将电极数组嵌入于患者的脊柱中,即可用于记录大脑发送的讯号。(来源:Intel)MTcednc

Borton解释说,神经系统极具可塑性,并且可以随着时间的进展而学习——即神经元的“发射”和整合——这意味着从脊柱的一部分进行记录并刺激另一部分,就能让神经系统学习该特定讯号的含义。MTcednc

Borton说:“这并非进行精确的一对一映射。我们计划开发的接口将记录来自成千上万个神经元的讯号,并将它们相互迭加在一起。而且,我们将刺激稀疏的触点子集,这些触点将不特定地影响成千上万个不同神经元的活动。只要有了好的起点,神经系统就有望学会如何进行解释。”MTcednc

神经网络

英特尔AI团队将与布朗大学的认知、语言和心理学副教授Thomas Serre合作——他专精于开发以生物启发的AI网络。Serre最近有关“视觉皮层如何进行视觉处理”的神经网络研究显示,生物启发的架构可望以更少的数据训练产生模型,而且效率更高。MTcednc

Borton说,用于智能脊柱接口的神经网络将基于医学界对下肢解剖学和功能结构的理解,而且可以在一定程度上进行建模。MTcednc

训练数据是任何神经网络的关键要求,但是,智慧脊柱计划将比典型的AI系统存取更少的训练数据。MTcednc

但这种AI系统需要分别针对每一位患者进行训练吗?MTcednc

Borton说:“这正是我们打算研究的目标之一。答案很可能是肯定的。而另一个悬而未决的问题是,如果我们确实对一位参与患者进行了训练,那么究竟需要多少再训练或是多么深度的训练?实际上得再训练多少层?这些可能都会很有意思。而当我们得以收集来自更多患者的数据,随着时间的进展,还可能从中得知在脊髓的不同损伤部位发生了哪些病变,因而可能有助于推导出新的诊断发现。”MTcednc

硬件和软件

布朗大学团队将与英特尔的研究人员合作,英特尔将为这项研究计划提供硬件、软件和研究支持。MTcednc

英特尔的Hanlin Tang指出,该研究计划的第一年将着重于开发神经网络,到了第二年则将应用算法,同时,英特尔将开始为开发中的机器学习加速器(特别是用于训练和推论的英特尔Nervana神经网络处理器系列)进行优化。软件堆栈则将采用英特尔开发的跨平台软件nGraph。MTcednc

Tang说:“这真正令人振奋之处在于工作负载还不完全为人所知。与企业客户的合作将会有所不同,针对企业客户,您可能面对需要为五项工作负载进行优化的任务。”MTcednc

最大的硬件和软件挑战之一在于实现实时的操作,以修复患者的运动和膀胱控制。MTcednc

他说:“我们需要实时诠释所有的通道和不同的频段,然后对其进行解读,以及学习如何刺激并弥合神经回路空白。”MTcednc

其最终目的在于利用这项研究开发出新技术,让小型的植入式装置可协助病患在复原期间进行复健运动和膀胱控制,并希望有一天能够有助于让许多脊髓损伤患者真的重新再站起来!MTcednc

(原文发表于ASPENCORE旗下EDN姐妹媒体EETimes,参考链接:Intelligent Spine Interface will Bridge Spinal Injuries with AI,编译:Susan Hong  责编:Demi Xia)MTcednc

 MTcednc

  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 因眼睛小车主被辅助驾驶误判“开车睡觉”,小鹏、蔚来回 昨日,汽车博主@常岩CY 发博称自己突然上了热搜,原来就是因自己眼睛小被小鹏汽车自动驾驶误判“开车睡觉”,不住的发出提醒。此外,@常岩CY 称在多款车型上都收到此困扰。无论是红外还是摄像头,只要开始检测眼睛,就会判定过度疲劳。小鹏P7会提示他睡觉,蔚来ET7一开车就认为其疲劳和走神,岚图FREE会在冬天为了让其“别困”而打开冷风……
  • 国际象棋机器人Chessrobot夹断对手手指,意外还是设计缺 据悉,在7月19日的莫斯科国际象棋公开赛期间,一位7岁小男孩疑似因提前走子犯规手,意外被“对手”国际象棋机器人Chessrobot夹住手指,造成指骨骨折,该事件登上了热搜榜。该男孩是莫斯科9岁以下最强的30位棋手之一。
  • “智能家居”未来将可通过呼吸控制操作 凯斯西储大学的研究人员创造了一个简单的原型设备,使用户能够通过改变他们的呼吸模式来控制“智能家居”。这种自供电装置可放入鼻孔,并有可能提高行动不便或无法清晰说话的人的生活质量。如果个人呼吸困难,它也可以编程为医务人员提供自动警报。
  • 核酸采样机器人将取代“大白”?用了哪些技术保证采样准 取棉签、核酸采样、储存核酸采样管、设备消杀……动作精准流畅,今后给你核酸采样的可能不再是“大白”,而是机器人。EDN小编就带大家来看看,目前已被使用的核酸采样机器人有哪些?
  • 一个AI程序就可将手机电池增加30% 一项尖端的人工智能开发可以将智能手机的电池寿命延长 30%。这项应用则是利用 AI 分析正在使用的应用程序的 FPS 变化,并试图找到 CPU 和 GPU 处理器的最佳运行频率以适应变化,同时消耗设备中最少的功率和温度增益……
  • AI视觉芯片如何赋能两轮车出行? 6月29日,在由全球领先的专业电子机构媒体AspenCore和深圳市新一代信息通信产业集群联合主办的“2022国际AIoT生态发展大会-智慧两轮车分论坛”中,嘉楠科技副总裁汤炜伟以《勘智AI视觉芯,赋能智眼两轮行》为主题,向大家分享了嘉楠地芯片设计创新历程,及其RISCV架构AI芯片技术路线图,并以具体案例展示AI视觉芯片如何赋能两轮车出行。
  • 碎片化、成本高是难题,AIoT行业需要哪些改变? 作为AIoT的行业基石,物联网市场到2022年预计将达到 144 亿活跃连接。随着供应限制的缓解和增长的进一步加速,IoT Analytics 最新预测指出,到2025年全球将有大约 270 亿台联网物联网设备。中国物联网链接到2025年也将达到80亿。随着整个AIoT和IoT市场的快速成长与变化,我们将面临哪些风险和挑战?
  • 英特尔张宇:边缘AI有三个阶段,我们还处在山脚 在AspenCore举办的“2022国际AIoT生态发展大会”上,英特尔公司高级首席工程师、物联网事业部中国区首席技术官张宇博士通过视频方式分享了“边缘AI技术发展趋势与展望”主题演讲。
  • 世界上尺寸最大的芯片Wafer Scale Engine-2打破了在单 Cerebras公司售价数百万美元的“全球最大AI芯片”Wafer Scale Engine-2又有新消息,在基于单个Wafer Scale Engine-2芯片的CS-2系统上训练了世界上最大的拥有200亿参数的NLP(自然语言处理)人工智能模型。
  • 婴儿或可帮助解锁下一代人工智能 都柏林圣三一学院的神经科学家及其同事刚刚发布了改进人工智能的新指导原则,他们表示,婴儿可以帮助解锁下一代人工智能(AI)。
  • 日本要利用机器学习实现半导体研究自动化 新型薄半导体材料的开发需要对大量反射高能电子衍射(RHEED)数据进行定量分析,既耗时又需要专业知识。为了解决这个问题,东京理科大学的科学家们确定了可以帮助自动化 RHEED 数据分析的机器学习技术。他们的发现可以极大地加速半导体研究,并为更快、更节能的电子设备铺平道路。
  • 纯视觉自动驾驶更安全?美国交通部发布数据打脸特斯拉 特斯拉的纯视觉自动驾驶到底效果如何?真的如马斯克所说的:“通过摄像头和计算机网络让自动驾驶比人类驾驶更安全”吗?近日美国国家公路交通安全管理局发布了一份新的数据,颇有打脸特斯拉的意味。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了