向右滑动:上一篇 向左滑动:下一篇 我知道了
广告

DeepMind的团队让AI系统绘出人脸画像,AI要抢画家饭碗了?

时间:2019-10-21 作者:Sally Ward-Foxton,EE Times Europe特约编辑 阅读:
DeepMind的团队成功以强化学习让AI系统绘出人脸画像,这是一种创造力吗?机器也要来抢艺术家们的饭碗了?

在9月底于英国伦敦举行的深度学习高峰会(Deep Learning Summit)上,DeepMind (EETT编按:该公司现隶属于Google母公司Alphabet)的研究科学家Ali Eslami介绍了一个非常有趣的项目,名为“人工智能与创造力”(Artificial Intelligence and Creativity)。

Eslami在DeepMind的团队设置了一个AI代理(agent,一个会采取某种行动的神经网络),以绘制人脸作为挑战,在一台计算机安装绘图程序(Mypaint),让它能试验各种变量,例如选择笔刷、放置(placement)、线压(line pressure)以及颜色等。该AI代理被馈入未标记的人脸照片训练数据集,而结果是令人惊讶的逼真。

以未标记人脸照片训练的AI代理所绘制出的人脸。

(来源:DeepMind)

Eslami的团队是利用了强化学习(reinforcement learning)技术。今日大多数的AI系统是采用监督式学习(supervised learning),所馈入的数据是以某种方式标记过的,因此系统能将结果与标准答案进行比对;相反的,非监督式学习则是馈入未标记的训练数据,让系统尝试以自己的方式去辨别特征。

强化学习就是某种形式的非监督式学习,在训练过程中,有被称为鉴别器(discriminator)的第二个AI代理对结果提供回馈,好让负责创造的AI代理去学习。在产生影像的情境中,该鉴别器可能会比较产出的影像与训练数据,然后针对是否能辨别出差异提供回馈,这种回馈可能是一种分数,以量化辨别所产生影像与训练数据集之间差异的困难程度。

强化学习采用两个AI代理,其一负责创造影像,另一个则尝试分辨创造出的影像与实际数据之间像不像。

20191015-101.jpg

(来源:DeepMind)

在DeepMind教导其AI系统如何画图之前,他们已经教过该系统如何写字──去年该AI系统一开始接受的训练是各种英文字母的手写字与字体的影像(采用MNIST与Omniglot数据集),而且系统非常成功地重现了那些字母。

DeepMind团队还很惊讶地发现,若限制笔划数,所产出的结果就很像是人类在匆忙中写出的字迹,点与较小的特征会连在一起;该公司团队还将算法与拿着画笔的机器手臂联机,以产生手写书法。

一旦该AI系统能应付手写字,Eslami的团队就让系统升级以应用更大的网络,并采用更多CPU进行训练。当采用人脸照片做为训练数据集,AI系统绘制出的画像会变得越来越逼真,如下图所示的绘画过程各个阶段。

AI系统绘制人脸画像的过程。

20191015-102.jpg

(来源:DeepMind)

请注意,该AI系统并没有被提供目标影像,只是创造它认为看起来像人脸的画像,而且计算机并没有看过人类是如何绘图,只是藉由强化学习的尝试错误过程去探索关于绘画的一切。Eslami表示,这里实际上有两个复杂的任务,其一是以高精准度控制笔刷,其二是管理时间, 在过程中权衡其画像结果要看起来有多逼真。

接下来该团队所做的事情是自问:如果我们让任务变得更困难呢?于是他们将笔划的数量限制从1,000减少到20,而让他们惊讶的是,该AI代理仍然能产生虽然更抽象、但看得出是人脸的画像。

不同超参数(hyperparameters)下的不同AI代理所绘制的人脸“抽象画”样本。

20191015-103.jpg

(来源:DeepMind)

而Eslami表示,那些抽象画最让人震惊的是,该AI代理已经能清楚辨识构成人脸特征的重点──即眼睛、鼻子与嘴巴;他们原本认为AI系统只能透过模仿或是以监督式学习被教导这些抽象画,但强化学习确实也可能达成。

所以AI已经成功学会画图了..但这是一种创造力吗?或者只是随机结果?还有这能算是艺术吗?你可能会争辩,AI代理是利用创造力去尝试以不同的方法呈现人脸,如上面图片中的画像,即使它们看起来都像人脸,其中的差异性还是比相似性更多。

不过事实是,AI系统的意图并不在于将人脸抽象到绘画的最基本元素中,也不是要产生能唤起情感反应的画像,其目标是在于写实,是以画像看起来有多么逼真来评判其成功与否。

此外也会有人争议,AI系统绘制的画像是以高水平的技巧完成,所以这代表AI是有成就的艺术家了吗?当训练过程结束,该系统肯定能产出更好的画像,甚至学着从模糊的笔触开始,在最后添加更犀利的线条;可惜的是,今日对于何为艺术并没有严格的定义,也许这个问题的答案应该由观众们来决定。

(原文发表于ASPENCORE旗下EDN姐妹媒体EETimes,参考链接: Can an AI Learn to Draw?,编译:Judith Cheng   责编:Demi Xia)

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • 模拟与混合信号电路会否占领未来AI SoC高地? 随着摩尔定律的发展,过去30年的集成电路发展的最主要趋势是数字化。数字化设计是目前大型SoC的基本方法学,越来越多的模拟电路进入全数字时代,All Digital PLL, Digital LDO, Time-domain based ADC,Digital PA,数字化/二值化方法成为了克服模拟电路瓶颈的重要手段。然而“羞于见人”的模拟电路并非一无是处。
  • 一张订单的两面:从精准需求到精准供应 为了了解制造商们将如何应对下一波市场变化及行情,在管理供应链和渠道方面又会有哪些新策略,有芯电子今年向电子制造商、分销商/代理商、元器件原厂发出了三千多份问卷,涵盖通信、工控/仪表、消费电子、汽车电子、电力/能源等领域,最终获得了1614份有效问卷回复。其中从企业规模上来看,小微企业居多,从企业性质上来看,民企居多,与整个市场的结构较接近,反映了调查的严谨性与可靠性。
  • 地平线张永谦:AI在边缘侧落地背后的思考 “边缘侧智能设备大规模爆发的趋势,使数据成为如今AI芯片领域最大的挑战。”2019年11月7日,在由ASPENCORE《电子工程专辑》、《国际电子商情》和《电子技术设计》主办的“2019全球双峰会”上,地平线副总裁&AIOT芯片方案产品线总经理张永谦以“边缘AI芯片赋能行业,共建普惠AI时代”为题,介绍了地平线机器人在边缘AI芯片以及解决方案,以及地平线对AI在边缘侧落地背后的思考。
  • 从e-AI和SOTB两大技术看,如何通过技术创新实现业务模式 目前在各种领域当中都有AI的应用方案,但很多方案AI应用都取决于云端的计算能力。嵌入式系统对实时性的要求,会因为延时而出现滞后问题。在这样的环境下,嵌入式人工智能就能大显身手。
  • 安静!我要跟车子讲话... 随着CarPlay、Android Auto以及Echo Auto等平台渗透乘用车市场,车内语音识别技术预期将成为主流;但仍有一个答案未知的问题是:市场上有任何语音启动技术已经准备好随机应对车内的关键任务了吗?
  • 边缘AI大战一触即发 一场边缘AI大战正悄悄展开...每一家处理器供货商都将机器学习视为「金鸡母」,积极地调整自家公司策略,竞相为这个具有最大商机的领域——边缘AI提供加速特定工作负载的解决方案...
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告