广告

使用四运算放大器轻松实现四象限乘法器

2019-12-10 Sebastian Azevedo 阅读:
在所有四个象限对信号做精确模拟乘法(也即两个输入可正可负,并且乘法结果的符号也正确)绝非易事。由于对原有电路不满意,每当我坐在餐厅或火车上时,我就会立刻拿起纸和笔,试图攻克下面这个设计挑战:将两个信号相乘并干净地处理。

Y5mednc

记得当初我曾兴奋地听我一位启蒙技术导师讲解了模拟计算的概念:“你可以轻松使用运算放大器对任何信号进行求和和缩放,做微积分或任何数学运算。”作为一名物理专业的学生,我当时立即对将各种量表示为电压和电流的想法产生了兴趣。那么,可以使用简单的电路来计算信号的平方反比吗?他像往常那样拉长声音,失望地答道:……”Y5mednc

实际上,在所有四个象限对信号做精确模拟乘法(也即两个输入可正可负,并且乘法结果的符号也正确)绝非易事。由于对原有电路不满意,每当我坐在餐厅或火车上时,我就会立刻拿起纸和笔,试图攻克下面这个设计挑战:将两个信号相乘并干净地处理。也就是说从直流到尽可能高的频率。整个音频频段是最低限度。Y5mednc

多年来,我已经提出了十几种方案,并在各种项目中实施了其中许多方案,但是几乎没有一种方案可以与商用模拟乘法器的关键性能相媲美(自豪感和学生预算有限是发明之母)。Y5mednc

我终于得到了下文所述的电路,并且在我所有的应用情况下,它都非常符合我的目的。这个电路简单、现代,根据的是一个非常古老且精巧的方案:平衡环形调制。Y5mednc

该电路分为三个级:模式转换器/隔离器、二极管环和输出解码器。两个输入信号分别转换为共模和差模模式,用于对匹配肖特基二极管环提供偏置。输出通过差模虚拟地解码。二极管环的作用是将输入信号运送到任一或两个虚拟地,以便实现正、负或零增益Y5mednc

取决于元器件,该电路很容易获得几MHz的带宽,但真正的诀窍是在较高频率处保持良好的隔离度。购买0.1%的电阻非常经济,而且我的这些已经买了10年了。至于二极管,我使用了一对BAT54S,效果非常好;每个内部又都包含一对匹配度非常好的二极管,因此简化了很多工作。在实践中,由于放大器失调电压的关系,如果不进行调整,几乎不可能达到80dB的隔离度。TSV914LMV344,尤其是TSV714,取得了不错的效果。Y5mednc

从我们都知道并喜欢的电路开始:Y5mednc

multiplier-1Y5mednc
Y5mednc

然后考虑炮制一个差模等效项:Y5mednc

multiplier-2Y5mednc
Y5mednc

A放大器的输出端可以看到一个反相单位增益放大器。这个设置非常不错——我可以将任意数量的二极管连到任一虚拟地中,并实现任意的指数叠加。我“嗅到”一个乘法器。Y5mednc

将两个输入连接在一起并使一个二极管反向,可以产生双曲线,或者更确切地说是双曲线的任意叠加:Y5mednc

multiplier-3Y5mednc
Y5mednc

对于小信号,双曲线特性与抛物线或平方律关系没有区别。这是因为泰勒级数展开的所有常数项和奇数项都消失了,而第一项相对于输入电压却是二次项。Y5mednc

从任意平方项的叠加实现乘法器非常容易。我偶然发现的第一个是:Y5mednc

multiplier-4Y5mednc
Y5mednc

从美学上讲,这个原理图令人赏心悦目,但我很难将其匹配到四通道运算放大器上。Y5mednc

这是另一个:Y5mednc

multiplier-5Y5mednc
Y5mednc

这幅图好一些。平方和部分已通过上述电路完成。所需做的是将一个信号馈入到输入的共模端,然后将另一个信号馈入到输入的差模端,这就会像变魔术一样“吐出”乘积。Y5mednc

因此,剩下的设计挑战就全部是搭建这样的设备:Y5mednc

multiplier-6Y5mednc
Y5mednc

我确信有人可以拿出更好的版本,但我的设计如下:Y5mednc

multiplier-7Y5mednc
Y5mednc

将这两部分组合在一起,就可以得到设计的基本原理图:Y5mednc

multiplier-8Y5mednc
Y5mednc

我用这个电路去平衡和不平衡各种东西。甚至可以将共模和差模信号转换回单端。Y5mednc

multiplier-9Y5mednc
Y5mednc

这个实际的电路模型是在我一个早期的运算放大器分线板(蓝色)上完成的,对此我还有许多的方案。Y5mednc

multiplier-10Y5mednc
Y5mednc

这个通孔电阻器的接线有点使我想起了海军陆战队的战争纪念馆。Y5mednc

她工作起来很有魅力,所以我又做了下面的PCB原型。Y5mednc

multiplier-11Y5mednc
Y5mednc

multiplier-12Y5mednc
Y5mednc

在用乘法器。Y5mednc

multiplier-13Y5mednc
Y5mednc

连到示波器的原型板的原理图。Y5mednc

以下是我实验台上的真实照片。该图像出自通孔原型。Y5mednc

multiplier-14Y5mednc

这是快速方波与慢速三角波相乘的波形。Y5mednc

YouTube上可以观看该乘法器在音乐条件下的工作。Y5mednc

如果有人囊中有更好/更经济的乘法器方案,我很想倾听这一切。“乘而治之”!Y5mednc

Sebastian Azevedo是一位来自加拿大安大略省的离经叛道的模拟设计师。Y5mednc

 (原文刊登于EDN美国版,参考链接:Easy four-quadrant multiplier using a quad op ampY5mednc

本文为《电子技术设计》2019年12月刊杂志文章,版权所有,禁止转载。免费杂志订阅申请点击这里Y5mednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 从技术角度分析,GaN和SiC功率器件上量还欠什么? 氮化镓(GaN)和碳化硅(SiC)这两种新器件正在推动电力电子行业发生重大变化,它们在汽车、数据中心、可再生能源、航空航天和电机驱动等多个行业取得了长足的进步。在由AspenCore集团举办的PowerUP Expo大会上,演讲嘉宾们深入探讨了包括GaN和SiC在内的宽禁带(WBG)器件的技术优势以及发展趋势。
  • 学子专区—ADALM2000实验:跨阻放大器输入级 本次实验旨在研究简单跨阻放大器的输入级配置。
  • “中国IC设计成就奖”提名产品简介:16位250KSPS多通道S MS5182N/MS5189N是4/8通道、16bit、SAR型模数转换器。MS5182N/MS5189N内部集成无失码的16位SAR ADC、低串扰多路复用器、内部10PPM低漂移基准电压源(可以选择2.5或4.096V)、温度传感器、可选择的单极点滤波器以及当多通道依次连续采样时非常有用的序列器。
  • “中国IC设计成就奖”提名产品简介:功放芯片8002A优势 8002A是一款AB类,单声道带关断模式,桥式音频功率放大器。
  • “中国IC设计成就奖”提名产品简介:固定增益仪表放大器 仪表放大器是模拟信号链领域里仅次于模数转换/数模转换(ADC/DAC)的高端产品,技术门槛高、研发难度大,市场应用上长期以来都只能从欧美供应商中选择,国内仪表放大器尚处于起步阶段,可选用的产品型号还相等匮乏。RS633的推出将打破欧美厂商在高性能仪表放大器芯片细分领域的市场垄断,实现仪表放大器产品的国产化,保障自给自足,推动国内高端模拟芯片的研发水平快速发展、提升。
  • “中国IC设计成就奖”提名产品简介:艾为Smart K音频功 AW87559是艾为专门为提高音乐输出动态范围,提高整体音质而设计的音频功放IC。它是新型高效、高PSRR、低噪声、恒定大音量的第五代Smart K音频放大器。
  • 自耦变压器SPICE建模 自耦变压器又称为单绕组变压器,可分升压变压器及降压变压器;它是一种只有一组线圈的变压器,其中一个线圈作为另一线圈的一部份...
  • “中国IC设计成就奖”提名产品:内置24位高精度ADC的32 本芯片是带有LCD驱动和24位高精度ADC的32位MCU的SOC产品,提供120KB Flash空间用于存储用户程序。
  • “中国IC设计成就奖”提名产品:和芯星云ⅣUC9810 NebulasIV UC9810 是和芯星通自主研发的新一代射频基带及高精度算法一体化 GNSS SoC 芯片。通过低成本、小型化、低功耗、高集成度、优异的RTK性能、双天线定向、高性价比等特点,包括国内首创22nm工艺的多模多频低功耗高精度射频基带一体化SoC技术、双处理器主从异步架构,构建全系统多频点、高性能、高安全的运算平台、时频联合抗干扰及片内宽窄带射频抗干扰技术、多频点信号间的辅助捕获和跟踪技术、RTK序贯差分策略,开发的一款应用于高精度市场的GNSS SoC芯片。
  • “中国IC设计成就奖”提名产品:信号调理及变送专用SoC SD23M201是一款用于阻式或电压型传感器应用的信号调理芯片。内部集成2路24位ADC,可分别用于主信号测量和辅助温度信号测量,主ADC支持EMI检测,可降低干扰信号的影响。内部集成32位可编程MCU,支持客户开发,可通过串行方式实现在线调试。集成16位DAC,支持比例电压、绝对电压和4-20mA电流和PWM输出,模拟输出允许超量程10%。灵活的串行接口SPI、UATR、I2C、OWI,其中,OWI接口可借助电源线进行单线通信,无需额外线路。多种恒流源、恒压源激励输出,满足热电阻、电偶、桥式压力传感器等测量需求。6.5V~40V宽供电电压,适合多种工业现场应用需求。
  • 555 定时器 IC 50 岁了,为何它能经久不衰? 自 1972 年推出以来,555 定时器 IC一直在市场上广泛使用。在 IC 技术编年史中,那是恐龙时代。这种基本未改变的 IC 已经生产了很长时间,目前仍有十几家厂商提供这种芯片。我找不到具体的数字,但我怀疑每年仍有数百万人在使用传统和新设计。那么也许是时候让 555 退役并在那些传统的晶圆厂队列中为其他更新的模拟 IC 腾出空间了?
  • 颠覆数字视觉:意法半导体率先推出50万像素深度图像ToF 突破性的 FlightSense 3D 传感器增强智能手机、AR/VR设备和消费类机器人的成像能力;在40nm堆叠晶圆上实现专有间接飞行时间 (iToF) BSI 技术,新传感器集高性能、低功耗和小尺寸于一身
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了