广告

正交调制:数字通信背后的信号

2020-01-03 09:04:44 Bob Witte 阅读:
大多数现代通信系统都是数字的,使用离散的幅度或相位来表示正在传输的数据。可以从发送器可靠传输到接收器的状态数量越多,在给定的时间段内可以发送的数据也就越多。正交调制广泛用于5G及以下的数字通信系统中。

调制是电子通信的基础。调制信号可以是自然界的模拟(声音或音乐)或数字比特流。大多数现代通信系统都是数字的,使用离散的幅度或相位来表示正在传输的数据。可以从发送器可靠传输到接收器的状态数量越多,在给定的时间段内可以发送的数据也就越多。正交调制广泛用于5G及以下的数字通信系统中。pMmednc

调制背后的基本思想是通过调制信号来控制RF载波的一个或多个参数。在数学上,我们可以这样表示:pMmednc

其中:pMmednc

a(t)是调幅(AM)项;pMmednc

θ(t)是调相(PM)项;pMmednc

fc是载波频率。pMmednc

该信号的幅度由a(t)控制,相位由θ(t)控制。为了实现幅度调制(AM),我们将调制信号对应为a(t),而将θ(t)设置为零。同样,经过相位调制(PM)的信号是将a(t)设置为常数,而将调制信号对应于θ(t)。我们现在不考虑调频(FM),但会说明可以用PM实现FM。pMmednc

矢量表示

矢量表示法通过定义同相(I)和正交(Q)分量来表示已调信号,非常方便。pMmednc

使用三角恒等式:pMmednc

我们可以将已调信号表示为以下形式:pMmednc

可以将上式变形,提取出I和Q分量:pMmednc

其中:pMmednc

pMmednc

图1以图形方式对此进行了表示,其中I分量在水平轴上,而Q分量在垂直轴上。这种形式对于电子工程师来说应该很熟悉,它利用的是正弦和余弦函数之间有90度的相位偏移。pMmednc

图1:已调信号幅度和相位的矢量图表示。[改编自参考文献1]pMmednc

利用以下公式,可以将已调信号的幅度和相位与I和Q分量关联起来:pMmednc

为了强调这些变量随时间改变,并且通常会根据所加调制而变化,我在方程式中保留了“(t)”。对于经典的AM,是矢量在长度(振幅)上变化而相位角保持不变。对于PM则情况相反:矢量的振幅保持恒定,但角度随调制而变化。pMmednc

现在看上去这只是一些三角问题,但正交调制系统通常是用图2所示的框图来实现的。pMmednc

图2:正交调制器使用正弦和余弦函数来调制振荡器的载波。pMmednc

我们可以将i(t)视为控制同相(余弦)部分,将q(t)视为控制正交(正弦)部分。将它们加在一起就可以得出所需的输出信号。这个框图可以使用模拟或数字技术(或两者的结合)来实现。业界已经使用这两种方法构造出实际系统,但是无疑,使用数字电路和数字信号处理才是明显的趋势。pMmednc

图2描绘了正交调制系统的发送侧。接收端则会有一个相应的正交检波器,用于从已调波形中提取I/Q信号。pMmednc

数字调制

正交调制可用于实现无数种调制方案,但对于数字调制才具有最大的价值。例如,使用矢量相位的数字调制称为相移键控(PSK)。pMmednc

图3给出了PSK的两个示例:4PSK使用4个不同的相位来产生四种调制状态(请注意,幅度保持不变)。图3仅画出了矢量的尖端落在何处,这是描绘这些状态的常用方法。这种类型的图通常称为星座图。因为调制形式具有4种可能的状态,所以每个调制状态都可以代表两个二进制值(图中表示为00、01、10、11)。pMmednc

图3:简单PSK信号的星座图。[摘自参考文献3]pMmednc

图3还绘制了8PSK,即使用相位调制来创建8个调制状态。这8个状态对应3位逻辑状态。系统的调制状态越多,就能在给定的时间内传输越多的信息位(但在噪声环境下会增加误码率)。pMmednc

正交幅度调制(QAM)同时使用幅度和相位来增加调制状态。图4绘制了16QAM(具有16种状态)。根据数字调制,调制矢量可以跳来跳去,指向这些状态中的每一个。为了简化起见,图中未写出逻辑值,但是调制状态对应16个值,可以代表4位信息。pMmednc

图4:16QAM信号的星座图。[摘自参考文献3]pMmednc

FM又是如何?

可以看到,通过调制载波的幅度和相位来获得已调载波这种方法非常灵活。尽管FM是1920年代就出现的一种古老技术,但今天仍在广播和陆地移动无线电等应用中使用。我们如何使用正交调制实现FM?pMmednc

通常,瞬时频率是瞬时相位的导数[参考文献4]。pMmednc

其中:f(t)是瞬时频率,θ(t)是瞬时相位。pMmednc

对于FM来说,瞬时频率必须根据调制信号而变化。pMmednc

其中:kd是偏差常数,m(t)是调制信号。pMmednc

求解所需的相位信号,我们得到:pMmednc

该结果表明,可以通过提供相位调制,即调制信号的积分来获得FM信号(这里忽略了积分的初始条件)。pMmednc

可以使用模拟积分器或等效的数字算法获得所需的PM信号。因此,正交调制器可以使用PM产生FM信号。pMmednc

正交调制和I/Q信号广泛用于电子通信系统中。特别是数字调制很好地利用了正交调制系统。但是,也可以利用它来产生任何载波调制,包括传统调制类型,例如AM和FM。I/Q数字流的概念由于非常灵活,而在许多电子通信系统中获得使用,并已成为表示调制信号的事实上的标准。pMmednc

参考文献

  1. Spectrum and Network Measurements (2nd Edition), Section 6.12 Quadrature Modulation, Robert A. Witte, SciTech Publishing, 2014.
  2. Digital Modulation in Communications Systems- An Introduction,” Application Note, Publication Number 5965-7160E, Keysight Technologies, 2014.
  3. Modulation Schemes: Moving Digital Data With Analog Signals,” Andrew W. Davis, EE Times, 4 Oct 1997.
  4. Instantaneous Phase and Frequency,” Wikipedia.

Bob Witte是Signal Blue LLC公司的总裁, 该公司是一家技术咨询公司。 pMmednc

(原文刊登于EDN美国版,参考链接:Quadrature modulation: The signal behind digital communicationspMmednc

本文为《电子技术设计》2020年1月刊杂志文章,版权所有,禁止转载。免费杂志订阅申请点击这里pMmednc

本文为电子技术设计原创文章,未经授权禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
Bob Witte
Bob Witte在Keysight Technologies、Agilent Technologies和Hewlett-Packard Company的研发、技术规划、战略规划和制造部门担任过多个职位,目前是技术咨询公司Signal Blue LLC的总裁。 从内心深处,他只不过是一名乐于看到用创新产品来解决真正的客户问题的一名工程师。Bob写了两本关于测试和测量仪器的书:《电子测试仪器》和《频谱和网络测量》。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 深圳允许完全自动驾驶车辆上路,主驾无需坐人 据EDN电子技术设计引援央视财经报道,从8月1日开始,《深圳经济特区智能网联汽车管理条例》正式实施,智能网联汽车列入国家汽车产品目录或者深圳市智能网联汽车产品目录,这也让深圳成为了国内首个允许L3级别自动驾驶车辆合法上路的城市。
  • 我国建成开通5G基站数达185.4万个 工信部近日透露,截至2022年6月底,中国5G基站数达到185.4万个,其中二季度新增基站近30万个,已建成全球规模最大、技术领先的网络基础设施,实现“县县通5G、村村通宽带”。。
  • 俄罗斯要绕过5G直接开发6G!投资300亿卢布够吗? 在全球通信技术竞争上,中国的5G发展速度遥遥领先于其他国家,更多国家开始在6G上较劲儿。今日,“俄罗斯决定绕过5G直接开发6G网络”登上热榜,引起网友热议。
  • MIT研究人员发现了一种性能比硅更好的半导体材料 硅是地球上最丰富的元素之一,其纯净形式已成为许多现代技术的基础,从太阳能电池到计算机芯片,但硅作为半导体的特性远非理想。现在,来自 MIT、休斯顿大学和其他机构的一组研究人员发现了一种称为立方砷化硼的材料,这种材料可以克服硅的上述两个限制。其为电子和电洞提供了高迁移率,并具有优良的热导率。研究人员表示,这是迄今为止发现最好的半导体材料,在将来也可能说是最好的材料。
  • Matter智能家居应用上路 无线连接是智能家居应用和Matter规范的核心。为了符合Matter标准,业界芯片供货商正通过集成802.15.4或扩展其无线产品组合,以单芯片支持多种无线协议的实力推动智能家居应用的Matter转型…
  • 一种简单的PCB加温电路设计 加温电路的主要目的是为了在低温时,电路发挥作用为PCB板进行加热保温使其温度可以保持在器件可运行的最低温度以上,所以并不需要对温度进行精确的控制。因此制定以下方案,使用电阻与NTC温敏电阻进行分压,对一只MOS管或三极管进行控制。当温度低到一定阈值时,电阻与NTC电阻分压升高,打开加温电路,当温度回升后分压下降,降电路关闭。
  • 模拟信号是怎么转换成数字信号的? 带宽有限(band-limited) 采样频率大于2倍信号最高频率后可以无失真的恢复出原始信号。实际中,信号往往是无线带宽的,如何保证带宽有限?所以,我们在模拟信号输入端要加一个低通滤波器,使信号变成带宽有限,再使用2.5~3倍的最高信号频率进行采样。关于此我们下面将模拟数字转换过程将会看到。
  • AIoT生态发展大会智慧两轮车分论坛圆桌讨论:智慧两轮车 在AspenCore举办的“2022国际AIoT生态发展大会”上,“智慧两轮车分论坛”的圆桌讨论环节邀请到全志科技、威灵电机、发掘科技、台铃科技和灵动微电子五家两轮车市场的芯片商、方案商、系统商和整车厂,围绕“智慧两轮车市场如何弯道超车?”的主题展开了讨论。
  • 智能化、联网化趋势下,传统电动自行车企业如何价值再造 随着绿色低碳意识的提升,以及外卖与快递行业的发展,近年来电动自动车的产量及销量大幅增长。但与此同时,电动自行车的安全问题也引起全社会的关注。数据显示,2021年1-10月器期间,电动自行车电池故障引发的火灾1.4万起,包含多起人身伤亡事故,在政府的重视下,中国质量认证中心发布了智能电动车认证技术规范,希望能够用技术手段,用物联网手段降低电池的安全相关事故,能够提高电动自行车在电池和整车的安全性。电动自行车的智能化、联网化已成为刚需。
  • 美的威灵电机:两轮车电动力系统技术发展趋势与解决方案 日前,在AspenCore举办的“2022国际AIoT生态发展大会”的“智慧两轮车分论坛”上,广东威灵电机制造有限公司两轮车项目经理刘海量分享了“两轮车电动力系统技术发展趋势与解决方案”主题演讲。
  • 发掘科技:V2X场景中的两轮车方案 日前,在AspenCore举办的“2022国际AIoT生态发展大会”的“智慧两轮车分论坛”上,发掘科技战略发展总监屈博发表了“V2X场景中的两轮车方案”主题演讲。
  • 电动两轮车需要什么样的MCU方案? 电机控制器作为智慧电动两轮车的“控制中心”,操控着车辆的加速、定速巡航、能量回收。在6月29日全球领先的专业电子机构媒体AspenCore和深圳市新一代信息通信产业集群联合主办的“2022国际AIoT生态发展大会-智慧两轮车分论坛”上,专注于MCU研发和生产的灵动微电子,分享了智慧两轮车需要什么样的电机驱动芯片。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了