广告

加速AI深度学习,BF16浮点格式应运而生

2020-03-06 Sally Ward-Foxton,EE Times特派记者 阅读:
加速AI深度学习,BF16浮点格式应运而生
为了加速AI深度学习(DL)的效能,包括Google、英特尔和Arm等越来越多公司开始导入BF16,但这种新的浮点格式可能成为深度学习运算主流?

全新的数字格式——‘BF16’,专为人工智能(AI)/深度学习(DL)应用优化发展而来,有时也称为‘BFloat16’或‘Brain Float 16’。它一开始是由Google Brain团队发明,并用于其第三代Tensor Processing Unit (TPU),如今已被Google、英特尔(Intel)、Arm等许多公司的AI加速器广泛采用。GI8ednc

采用16位脑浮点(brain floating point)格式的BF16,主要概念在于透过降低数字的精度,从而减少让张量(tensor)相乘所需的运算资源和功耗。「张量」是数字的三维(3D)矩阵;张量的乘法运算即是AI计算所需的关键数学运算。GI8ednc

如今,大多数的AI训练都使用FP32,即32位浮点数。尽管这表示可以达到非常准确的计算,但需要强大的硬件而且极其耗电。推论一般使用INT8¬¬,即8位整数精度的运算模式,虽然是较低精度的数字系统,但在相同硬件上提供了更高的传输效率,因而能够更省电,只是计算结果(预测)的准确性较低些。GI8ednc

BF16的基本概念是为精度和预测准确性之间的权衡进行优化,从而提高吞吐量。GI8ednc

浮点数字解析

在运算中的二进制数字可以表示为:GI8ednc

尾数x基数指数,基数为2GI8ednc

在FP32浮点格式中,每个数字都表示为:GI8ednc

1位代表符号(+或-),其后为8位指数,接着是23位尾数(总共32位数字)GI8ednc

至于BF16浮点格式,Google Brain团队建议将FP32数字的尾数缩减到7位,以稍降低精度。GI8ednc

因此,BF16数字则可表示为:GI8ednc

1个符号位,然后8个指数位,接着是7个尾数位(共16位数)GI8ednc

GI8ednc

浮点数字格式(来源:Google)GI8ednc

由于指数大小相同,这些16位数字提供了Google所追求的更高吞吐量,同时又能保留FP32的近似动态范围(该系统可以代表整个数字范围)。GI8ednc

使用BF16的算法预测准确度相当于FP32——Google解释这是因为神经网络对于指数的大小要比尾数更敏感)。对于大多数应用来说,这已经是可以被接受的折衷方案了。GI8ednc

为什么不使用FP16?

目前普遍用于行动绘图应用中的FP16,同样也是16位浮点数字格式。那么,为什么不直接使用呢?GI8ednc

FP16包括:GI8ednc

1个符号位,5个指数位,然后10个尾数位(共16位数字)GI8ednc

使用这种格式时,由于指数小于FP32,因而动态范围大幅缩减。此外,将FP32数字转换为FP16比起转换为BF16更困难——相较于仅截去尾数,FP16更麻烦,而BF16的操作相对上较简单。GI8ednc

另一个要点是计算所需要的芯片实体面积。由于硬件乘法器的实体尺寸会随着尾数宽度的平方而增加,因此从FP32转换到BF16可以大幅节省芯片面积——这也就是Google之所以为其TPU芯片选择使用BF16。BF16乘法器比FP32乘法器的尺寸更小8倍,而且也只有FP16同类型芯片约一半的尺寸。GI8ednc

还有哪些DL运算格式?

BF16并不是唯一一种被提议用于深度学习的新数字格式。例如,AI软件新创公司Nervana在2017年曾经提出一种称为‘Flexpoint’的格式。其概念是透过结合定点和浮点数字系统的优点,从而减少运算和内存的需求。GI8ednc

定点数(fixed point number)使用固定位数来代表整数和分数(小数点后的部分)——相较于上述的浮点格式,使用定点数字执行运算通常更简单,也更快捷。然而,针对特定的位数,定点数的动态范围比浮点数更小得多。GI8ednc

GI8ednc

Flexpoint数字共享相同的指数,让张量更易于相乘(来源:Nervana/NeurIPS)GI8ednc

Flexpoint张量中的所有(浮点)数字都使用相同的指数(不只是相同的指数大小,而且是完全相同的指数值)。张量中的所有数字之间共享指数,从而可以在整个张量中共同分担指数的通讯。GI8ednc

然后就可以让张量相乘作为定点运算,因为每次计算的指数都是相同的——这比起浮点数所需的数学更简单。这些计算足以代表绝大多数的深度学习数学,因此所能节省的资源与功耗都相当可观。然而,管理这些指数极其复杂,而且动态范围(可以表示的数字范围)很低,因为所有的数字都拥有相同的指数。GI8ednc

然而,Flexpoint却从未能起飞,甚至是Nervana在卖给英特尔之前,其自家芯片都一直使用BF16。GI8ednc

(原文发表于ASPENCORE旗下EDN姐妹媒体EETimes,参考链接:Artificial Intelligence Gets Its Own System of Numbers,编译:Susan Hong)GI8ednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 为云端时代建立AI与IoT的相关论述 技术产业正处于两次重大技术革命的边缘——人工智能(AI)负责执行人类无法完成的任务,以及数十亿台设备连接到因特网。除了技术幻想之外,它还提出了更多相关的问题…EDN编辑团队正忙于寻找这些答案,并将以最能满足设计工程师讯息需求的方式呈现。
  • 新冠疫情下的自动驾驶产业 下滑的汽车销售量与营收所导致的车辆研发资金减少,将产生显著的影响;不过影响程度在车厂、汽车零组件供应商、高科技业者与资本投资业者(VC)之间会有所不同...
  • 军事应用推动生物识别技术发展 生物识别技术涵盖不同的解决方案,包括指纹识别、脸部识别、虹膜识别等等,现在都能提供更高的可靠度以及准确度;接下来介绍几项生物识别技术在军事应用上的进展。
  • “地摊经济”火了,工程师如何练好摊? 新的地摊经济还可以结合了5G、人工智能、人脸识别等高科技管理手段和经营方式。
  • 川普再出新招,中国三千余名留学研究生恐遭驱逐 纽约时报引述知情美国官员报导,川普政府计划取消与中国人民解放军所属大学有直接关系的数千名美国境内中国研究生和研究人员的签证。
  • 13所中国高校被美国列入实体清单,为何没有清华北大? 继华为被列入之后,美国表示将在“实体清单”中增加33家中国企业和机构,其中包含了13所中国的高校。但为何中国最著名的两所大学,北京大学和清华大学并不在这份名单之内。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了