广告

教你如何看懂超声波图片

2020-05-13 15:10:11 质链网 阅读:
超声波扫描技术是失效分析中必不可缺的一环,因此作为新入门的失效分析工程师必须能够清晰的看懂超声波报告。而看懂超声波报告的前提是看懂超声波图片。下面,我就带大家简单的了解一下如何看懂超声波图片。

超声波扫描技术是失效分析中必不可缺的一环,因此作为新入门的失效分析工程师必须能够清晰的看懂超声波报告。而看懂超声波报告的前提是看懂超声波图片。下面,我就带大家简单的了解一下如何看懂超声波图片。lYXednc

一.从封装结构来看超声波图片

首先在我们看懂超声波图片之前,要了解到料件本身的封装结构。只有从结构来看超声波图片,才能迅速的找到自己想观察的位置。常见的封装主要分为金属引线框封装和基座式封装。lYXednc

1.金属引线框封装的基本结构:lYXednc

对应的我们举一个栗子,让大家更直观的看懂图片对应结构的位置:lYXednc

lYXednc

2. 基座式封装的基本结构:lYXednc

对应的我们举一个栗子,让大家更直观的看懂图片对应结构的位置:lYXednc
lYXednc

二.从超声波原理来看超声波图片

在了解料件结构后,我们再从超声波原理来看超声波图片。lYXednc

1.T-scan :检测透射信号lYXednc

根据超声波原理,遇见空气全反射。我们通过T扫描无法完全穿透料件,我们判断料件本身存在分层。lYXednc

对应的我们举一个栗子:lYXednc

显而易见,左右两侧的T扫描图片对比可以发现,左侧的T扫描出现大部分黑块。由此我们判断左侧料件存在分层,右侧图片无分层。lYXednc

2. C-scan 与TAMI:两者的关系为TAMI是很多层的C扫描lYXednc

C-scan:检测水平x方向的二维截面图 ;TAMI :可以同时扫描出2-999层C-扫描方式lYXednc

对应的我们举一个栗子:lYXednc

根据超声波原理,遇见空气全反射。我们在C扫描时无法接收到反射回来的正常成像,我们判断料件本身存在分层。lYXednc

对应的我们举一个栗子:lYXednc

lYXednc

根据超声波原理,遇见空气全反射。我们在C扫描时无法接收到反射回来的正常成像,我们判断料件本身存在分层。lYXednc

对应的我们举一个栗子:lYXednc

对比以上两张图片,我们可以看出,左侧料件的Die表面反射回来的图片出现大块亮块。因此,我们判断左侧料件Die表面分层。lYXednc

3. B-scan:检测垂直x方向的二维截面图lYXednc

根据超声波原理,我们在B扫描成像的图片中会发现,同一位置分层料件与未分层料件的区别在于分层位置很亮。lYXednc

对应的我们举一个栗子:lYXednc

对比以上两张图片,可以清晰的看出分层位置的B扫描图片会比较的亮。lYXednc

4. A-scan:检测波形并显示在示波器lYXednc

根据超声波原理,遇到不同介质会存在不一样的反射波。对应的波形,我们称为A扫描。lYXednc

如下,为无异常料件的A扫描波形。lYXednc

而根据遇见空气全发射的原理,我们判断分层位置的A扫描波形与无分层料件的波形相反。lYXednc

对应的我们举一个栗子:lYXednc

通过以上两组图片对比,我们可以清晰的看到无分层位置的波形与分层位置波形相反。我们通常称分层位置的波形为反向波。lYXednc

那么,通过以上介绍大家掌握了看懂超声波图片的要领了么?如果有任何问题,可以在后台咨询小编,联系我们的工程师,为你解答哟~lYXednc

责编:Demi XialYXednc

(本文由质链网供稿,EDN电子技术设计对文中陈述、观点保持中立)  lYXednc

  • 看A-Scan回波是否一致
  • 没有对比的话,单从波形怎么判断有无分层
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 商务部暂停天然砂对台湾地区出口,台积电难受了 据EDN电子技术设计了解,商务部网站8月3日早晨8点发布最新消息,表示将从即日起暂停天然砂对台湾地区出口。不少网友认为暂停天然砂对台湾地区的出口,此举将严重影响台湾的建筑业,实则影响不仅仅如此。台湾地区天然砂进口量的90%以上来自大陆,而台湾芯片占台湾2021年出口额的34.8%。网友称商务部暂停天然砂对台湾地区出口是捏到了台湾半导体制造业的七寸。
  • 仿真器智能,工程师更聪明! 不要过度依赖SPICE仿真器的自动设定,因为过度相信自动化有时可能引发错误。请记得:仿真器智能,工程师更聪明!
  • 儿童电子学(二):电容器 电容器是最重要的电气元件之一,我们将在儿童基础电子课程的第二部分了解它的工作原理我们将从储能功能方面对其进行探索,所进行的测试和实验将侧重于这一要素。
  • 美国参议院批准价值2460亿美元的芯片法案 美国参议院周三通过立法,以超过 750 亿美元支持国内半导体产业。GlobalFoundries、英特尔、三星代工厂、德州仪器、台积电和其他在美国建立半导体制造设施的公司或将受益。
  • 第三代半导体——碳化硅材料之制程与分析 SiC功率电子是加速电动车时代到来的主要动能。以SiC MOSFET取代目前的Si IGBT,不仅能使电力移转时的能源损耗降低80%以上,同时也可让芯片模块尺寸微缩至原本的1/10,达到延长电动车续航里程及缩短充电时间的功效。
  • 苹果芯片专家被三星挖走,担任新封装解决方案中心总监 在苹果扩张自研芯片版图的同时,也有半导体公司从苹果“挖”半导体专家,三星就是其中之一。据韩国商务部的一则消息指出,一位在苹果工作了九年的芯片专家离开了公司,加入了三星。
  • 三星正式发货第一批 3nm GAA 芯片 25日,三星电子在京畿道华城校区的V1线(仅限EUV)举行了使用下一代晶体管GAA(Gate All Around)技术的3nm代工产品出货仪式,这也意味着三星超越台积电成为第一家 3nm 芯片制造商。
  • 碳化硅电力电子应用不止于汽车 第三代宽禁带半导体——碳化硅(SiC)——正在发挥其众所周知的潜力,在过去五年内,汽车行业一直是该材料的公开试验场。然而,电气化议程不会以汽车开始和结束。更广泛的运输应用将很快出现,包括卡车和公共汽车、船舶和航运、火车的进一步电气化,甚至飞机。在供电方面,并网太阳能发电系统和通过高压直流链路传输能源,对于低碳能源的生产和分配也至关重要。
  • MIT研究人员发现了一种性能比硅更好的半导体材料 硅是地球上最丰富的元素之一,其纯净形式已成为许多现代技术的基础,从太阳能电池到计算机芯片,但硅作为半导体的特性远非理想。现在,来自 MIT、休斯顿大学和其他机构的一组研究人员发现了一种称为立方砷化硼的材料,这种材料可以克服硅的上述两个限制。其为电子和电洞提供了高迁移率,并具有优良的热导率。研究人员表示,这是迄今为止发现最好的半导体材料,在将来也可能说是最好的材料。
  • 增强型GaN HEMT的漏极电流特性 增强型GaN基高电子迁移率晶体管(HEMT)已经采用两种不同的结构开发出来。这两种增强型结构是金属-绝缘层-半导体(MIS)结构和栅极注入晶体管(GIT)结构。MIS结构具有受电压驱动的小栅极漏电流,而GIT则具有脊形结构和高阈值电压。两者也都有一些缺点。MIS对栅极干扰的可靠性较低,阈值电压较低,而GIT的栅极开关速度较慢,栅极漏电流较大。
  • 利用反极性MOSFET帮助555振荡器忽略电源和温度变化 恒定频率振荡器是555定时器的经典应用之一。然而,由于所用二极管的特性不理想,占空比的间隔会随着温度和V+电源的变化而变化。本设计实例给出了一种解决方法:利用反极性P沟道MOSFET引导电容的充电电流而不产生任何明显压降。
  • 高通发布4nm骁龙W5+骁龙W5芯片,专为可穿戴设计 据EDN电子技术设计报道,高通7月20日正式发布了全新4nm制程的骁龙可穿戴平台W5 Gen1和骁龙W5+ Gen。与两年前的上一代产品骁龙wear 4100相比,骁龙W5与W5+采用了全新的命名方式,整体功耗降低超50%。SoC工艺从12nm提升到4nm,协处理器使用22nm制程工艺。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了