广告

压力传感器的信号特征及误差分析

2020-05-27 14:55:05 Heilind 阅读:
只要有测量就一定存在误差。

传感器的误差

只要有测量就一定存在误差。对于具体应用而言,即使有误差,从某种意义上来讲,误差却也是相对的,只要误差在允许的范围之内,就可以被接受,并且专业的用户一般在实际应用中会遵循“适用,优选”的原则来选择传感器。压力传感器在应用中,其关注的特性包括但不限于以下几种特征:cSHednc

  • 压力测量范围:FSO-kPa(差压/静压,表压/密封表压,绝压)
  • 压力测量误差:±kPa
  • 测量分辨率:kPa/bit
  • 工作电压/电流
  • 存储、工作温度范围,测量介质
  • 压力测量响应特性,重复性,长期稳定性

在这些压力参数之下,掩藏着一颗将压力转换为电信号的压力传感器芯体或者模块。测量压力有多种原理方式,但不是每种原理都可以涵盖所有的压力类型及压力范围:cSHednc

  • 硅压阻
  • 溅射薄膜
  • 硅谐振
  • 电容式
  • 电涡流
  • 力平衡熔石英波登管
  • 应变片… 

关于误差分析,以下内容将针对硅压阻方式的压力传感器进行一个简单的说明。cSHednc

cSHednc

图-1硅阻压力传感器从硅片到各型封装应用cSHednc

在图-1中,列举了当前在各个领域中广泛应用的基于硅压阻压力传感器从裸片到若干封装的几个典型形式。产品类型中有的仅作外部封装,有的将对应量程输出模拟信号经过温度补偿和校准,可以进行互换操作的,有的进一步将模拟信号放大处理的,及进一步数字化处理后输出,有的进行数字化校准后使用相应的接口协议在工业界广泛应用的压力变送器形式的,以及在汽车,医疗等行业的应用中,集成其它诸如温度或者气体等传感器的成为一种综合形式的模块。当然,也有利用待测介质的压力特性测量其它对应的物理量,比如用于呼吸机等领域的基于低差压传感器的流量传感器等。cSHednc

一般而言,在未经数字化处理之前的压力传感器,多会在产品的特性栏中描述迟滞(压力、温度)及线性度、温度系数等特征参数,而经过数字化处理后的压力传感器或者变送器,在描述输出信号特性的时候,大多不再描述这些参数指标,而是提供总体的测量精度等参数。这种差异并不是因为数字化可以消除类似迟滞等特性,而是数字化处理后很难再区分是因为传感器元件的测量信号还是固件处理本身引起的某些类似迟滞等特性,因此一般均把迟滞、温度特性等引起的元件测量误差和量化处理误差综合成为了产品最终的测量精度、误差及长期稳定性的描述上更为合理。cSHednc

数字调理往往较少对传感器电桥的对称性进行处理。如果考虑到硅阻压力传感器在0负载点输出的偏差 (Offset)分布对于前端放大电路增益的影响,以及后续ADC部分对有效信号(FSO)因增益的变化导致的分辨率变化,则需要统筹考虑。数字化后的输出除非需要,否则Offset都从指定的0点计算。cSHednc

模拟补偿和校准,可以在ADC参与处理之前通过改善对称性(0点Offset输出接近于0V输出)、温度敏感性及输出一致性等方面,使得产品的互换性方面有明显的提升。因此两种方式均有各自的特点,这里在分析压力传感器的误差时,将不会对数字化之后的压力产品进行进一步分析,而仅限于利用电阻网络进行温补和校准后的压力产品。cSHednc

基于硅阻压力传感器的特性,其误差处理时,一般分为两种类型的误差:cSHednc

  • 可补偿误差(一般为温度影响所致,具重复性)
  • 不可补偿误差(一般为压力、温度及封装应力等所致,不可重复)

当然,即使是可补偿部分的误差,也会因为不同的补偿处理方式获得不同精度的误差抵消。cSHednc

cSHednc

为后续误差分析,在图-2中,展示了硅阻压力传感器一般的输出特性。图中所示术语如下:cSHednc

  • Zero: 理想参考零点
  • Offset: 实际零负载输出偏差,即施加0负载压力时的输出电压信号
  • FSO:满量程输出,从施加满量程压力时输出到零点输出信号差
  • BFSLNL:相对最佳拟合直线的非线性度 (Non-Linearity/Best Fit Straight Line)

传感器的特征值及误差分析

以下就Amphenol NOVA的一款中压100kPaG硅阻压力传感器进行封装、校准温补之后的316L不锈钢硅油隔离性产品NPI-19-101G进行初步分析。计算中并不涉及周边放大电路及信号处理部分。cSHednc

表-1:NPI-19VC-101G压力传感器参数表(1)cSHednc

cSHednc

表-2:误差计算从25℃到70℃cSHednc

cSHednc

  1. 可补偿是指可以经过温补和压力校准之后进一步缩小范围和大小的误差特性
  2. 一般长期稳定性包涵在短期稳定性特性中,所以计算误差使用短期稳定性即可
  • 5μV/V×10V×0.001/100mV=0.05%
  • 0.1μV/V×10V×0.001/100mV=0.001%
  1. Offset和FSO偏差所致误差计算:(±1mV/100mV×100)=1%
  2. Error_1 R.S.S.Max = √(1^2+1^2+〖0.2〗^2+〖0.75〗^2 )(%FSO)
  3. Error_2 R.S.S.Max = √(〖0.05〗^2+〖0.2〗^2+〖0.05〗^2 〖+0.05〗^2 )(%FSO)
  4. 综合最大误差=√(〖(Error_1)〗^2+〖(Error_2)〗^2 )(%FSO)
  5. 传感器电桥固有的热噪声包涵在以上各项测试参数中

从最后结果来看,很难想象这个硅压传感器在校准之前同样情况下的偏差可以达到±10%FSO以上。cSHednc

后记

如果有兴趣,大家可以对比一下硅阻压力传感器温补校准前后的参数特性,经过专业的操作,看起来天马行空的产品也可以被驯服稳定可靠,精度满足各种应用。小小乾坤,大有文章。当前安费诺传感器技术集团(ASTG)旗下有多个全球品牌引领压力传感器的研发、生产和应用。cSHednc

cSHednc

 cSHednc

以上产品的规格及功能如有更新,恕不另行通知。cSHednc

  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 一种用于电路板回收的新基材:遇水能溶 英国的Jiva Materials公司开发了一种新型的PCB基材Soluboard,这种基材是由天然纤维包裹在一种无卤的聚合物中制成的,与行业内经常使用的FR-4基材不同,这种材料只要在90摄氏度左右的热水中浸泡30分钟,就可以分层溶解···
  • 机器人版的ChatGPT,谷歌新模型泛化能力大幅提高 7月28日,Google DeepMind宣布以训练AI聊天机器人的方式训练了一款全新的机器人模型Robotic Transformer 2(RT-2),这是一种新颖的视觉-语言-动作(VLA)模型,可以从网络和机器人数据中学习,并将这些知识转化为机器人控制的通用指令。
  • 英伟达惨遭背刺,这个SDK让AMD平台也能运行CUDA 近日,AMD正式推出了HIP SDK,这是ROCm生态系统的一部分,基于开源ROCm解决方案,HIP SDK使消费者可以在各类GPU上运行CUDA应用,为专业和消费级GPU提供CUDA支持。
  • 意法半导体发布创新红外传感器,提升楼宇自动化的人员存 带有微加工热敏晶体管的高集成度、超低功耗传感器可取代传统的被动红外探测器
  • 头部跟踪功能如何提升您的空间音频体验 音频已成为我们使用媒体时沉浸感和逼真度的重要组成部分。当前的技术正在加强各种体验本身的沉浸式体验,让它们更加栩栩如生,但如果没有头部跟踪,由于大脑无法解决这种关键的含糊不清问题,这种沉浸感可能会被破坏。
  • 如何用软件定义无线电实现更有效的核磁共振成像仪设计 在本文中,我们讨论了MRI的基本概念,以及如何将SDR集成到这些系统中以提高性能和功能。我们介绍了一些适用于MRI应用的SDR规范,以及对MIMO射频通道的支持。还讨论了让SDR成为高性能射频单元的原因,以及高信噪比和MIMO通道之间的高相位相干性。
  • 电池能用三十年?美国Ener Venue称推出革命性电池技术 三元锂离子电池的理论寿命约为800次循环,磷酸铁锂约为2000次,而钛酸锂据说可以达到1万次循环,也就是说常规普通人使用的锂离子电池每天完全充放电三次,最多也就能用上几年的时间。虽然相较于铅酸电池200-300次的循环寿命来说,这已经是很大幅度的提升了,但现在有一家公司宣称他们的电池可以充放电30000次,每天充放电三次,能用30年。
  • 测试中比友商温度低14度,一加天工散热系统怎么做到的? 7月27日,一加在2023年ChinaJoy上发布了全球首创的散热技术,即航天级三维立体散热系统“天工散热系统”,这是一加的又一次新的尝试,让我们一起来了解一下。
  • 闪存控制器在医疗安全中的作用简述 与大多数其他领域不同,对医疗设备的攻击可能危及人们的健康甚至生命,特别是当有大量医疗设备联网以便对患者实现更好的监控和管理时。这包括药物输液泵、心脏起搏器,以及监测心率、血压和其他生命体征的设备。
  • 后来居上,美光宣布已出样业界首款HBM3 Gen2内存 7月26日,美光宣布推出业界首款8层24GB HBM3 Gen2内存芯片,是HBM3的下一代产品,采用1β工艺节点,目前该款美光内存芯片正在向客户提供样品。
  • 韩国造世界首个室温超导体,闹剧还是新的未来? 7月22日,韩国的一个科研团队在预印本网站arXiv平台上上传了两篇论文,声称发现了世界上首个常压室温超导体,这种材料是一种改性铅磷灰石名为LK-99,超导临界温度在127摄氏度,即400K以上,而且在常压下就具备超导性。
  • 基于软件的无线输电建模方法 本文探讨了无线输电(WPT)在电动汽车(EV)充电、手机充电以及医疗设备等应用中的作用。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了