广告

将低于 1GHz 连接用于电网资产监控、保护和控制的优势

2020-06-30 德州仪器(TI) 阅读:
对电网资产进行数据分析,可帮助运营商快速发现故障,同时还可对主要设备进行预测性维护,而如今几乎已不存在这种情况。确定采用哪种特定的无线技术,如低于1 GHz、低功耗蓝牙®、Wi-Fi®或多标准协议,取决于数据、带宽、节点之间的距离、所需连接数、可用功率以及所需的响应时间等因素。

电网的发展需要在现有的有线连接基础上增加无线连接,以进行资产监控和控制。增加无线连接的主要因素包括:uLsednc

  • 采用带分布式能源资源与传统发电、输电和配电一起使用的分散式微电网模式。
  • 对远程配电和自动化资产的健康和状态监控需求提高,监督一次设备的健康和状态监测,以优化电力管理;资源分配;故障定位,隔离和服务恢复(FLISR)。电网远程监控有助于实现电网的高效运行,减少停电次数和停电时间,并最大限度地减少损失。

对电网资产进行数据分析,可帮助运营商快速发现故障,同时还可对主要设备进行预测性维护,而如今几乎已不存在这种情况。确定采用哪种特定的无线技术,如低于1 GHz、低功耗蓝牙®、Wi-Fi®或多标准协议,取决于数据、带宽、节点之间的距离、所需连接数、可用功率以及所需的响应时间等因素。uLsednc

在电网资产中,像故障指示器这样位于偏远地区的节点需要连接到一个数据收集器,如图1所示,以便与集中式系统的自动数据交换。在这样的应用中,选择诸如低于1 GHz之类的无线通信,是因为它覆盖范围很广(几十米到几千米不等)且功耗非常低(平均电流为数十微安)。当在现场添加多个节点时,使用一个公共的收集器从远程设备按需获取数据时,低于1 GHz也是一种易于配置的低成本技术。uLsednc

uLsednc

图1:使用低于1 GHz将故障指示器连接到数据收集器uLsednc

增加低于1 GHz连接,涉及到与星型网络中的数据收集器进行双向通信。节点被配置成具有更快的响应时间来通信故障信息,以最小的延迟传达包括位置在内的故障信息,从而提供更快的恢复或自我修复功能。uLsednc

与其他无线连接解决方案(包括2.4 GHz蓝牙低功耗通信)相比,低于1 GHz具有这些优势:uLsednc

  • 由于使用较低的传输频率和数据速率,通信范围较长,因为接收器的灵敏度是数据速率的函数。作为一般的经验法则,将数据速率降低四倍,可以使通信范围增加一倍。
  • 低频(较长波长)射频(RF)波能够穿透障碍物,这使低于1 GHz在多种环境下都能正常工作。
  • 在低于1 GHz 射频法规中允许的低占空比可减少干扰。

使用低于1 GHz连接的常见电网终端设备之一是用于中高压传输的故障电流指示器(FCI)。FCI通过从负载电流中采集功率来供电。可用于采集电流处于几十微安的范围内。与FCI集成连接的最大挑战是,在没有采集功率的负载电流时,来收集电源时其是否能正常工作。另外,在广泛的环境条件下(如视线、有障碍物等)工作的要求也限制了传统电容器或某些电池的使用。因此,对于射频通信来说,简化数据传输以减少电流消耗至关重要,而这是通过优化节点与收集器之间的通信模式实现的。uLsednc

有两种用于管理数据发送(TX)和接收(RX)的模式:信标模式和非信标模式。在非信标模式下,传感器节点始终处于接收模式,因为没有定义数据收集器可以与之通信的时间,这会转化为更高的电流消耗(约5 mA)。除了根据节点之间的距离优化传输功率水平外,信标模式通信(见图2)最适合,因为它可以在传感器节点上实现唤醒模式和睡眠模式之间的占空比循环,以帮助在收发器关闭时节省电源。uLsednc

uLsednc

uLsednc

图2:信标模式通信uLsednc

信标模式包括在固定的时间间隔内从数据收集器广播一个信标,所有的传感器节点都能接收到。它使单个传感器节点和收集器之间的通信同步化。传感器节点只有在接收到信标时才会被唤醒,如果收集器想在下一个信标之前发送或接收数据,破译信标会给传感器提供信息。此过程可以使传感器可在过渡期间切换到睡眠模式,这对于故障指示器来说理想选择。uLsednc

用于为FCI添加连接性的TI参考设计

设计人员在将低于1 GHz连接集成到FCI时,会遇到诸多硬件和固件挑战。万物互联型电网参考设计:使用低于1 GHz的射频连接故障指示器、数据收集器、Mini-RTU 显示:uLsednc

低功率射频的集成涉及:uLsednc

  • 网络设置。
  • 使用信标模式进行发送和接收。
  • 包括配置和无线固件升级在内的数据交换。
  • 故障识别和数据通信。
  • 如何通过以下方法最大程度地减少故障指示器和数据收集器之间的功耗:
  • 目前提供了美国(915-MHz)、欧洲电信标准协会(868-MHz)和中国(433-MHz)频段的电流消耗数据。
  • RX电流低于6 mA,TX电流低于16 mA(在+10 dBm时)。
  • 能够在星形网络中实现5 s信标间隔(以RX模式配置的故障指示器)时,实现平均电流消耗小于20μA的能力。

该参考设计通过使用TI的SimpleLink™ 低于1 GHz器件,用于短距离连接多个节点,以及基于SimpleLink微控制器平台构建的15.4堆栈,提供了一个单一开发环境,具有代码可移植到多种连接协议的特性,是一种即用型、易于更新的低功耗连接解决方案,有助于解决与节点固件开发相关的挑战。uLsednc

低于1 GHz是一种简易、易于使用和安装的成本优化方法,可将无线连接添加到现有的电网资产中,从而使传统资产更加可靠,并提供更快的故障响应。uLsednc

您是否正在以任何形式进行电网连接的工作?您面临什么挑战?请在评论区告诉我们您的观点。uLsednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 交织型采样ADC的基本原理 在通信基础设施中,存在着一种推动因素,使ADC的采样速率不断提高,以便支持多频段、多载波无线电,除此之外满足DPD(数字预失真)等线性化技术中更宽的带宽要求。
  • 使用 4215-CVU 电容电压单元进行fF飞法电容测量 本文介绍了怎样使用 4215-CVU 电容电压单元进行飞法电容测量,包括怎样进行正确的连接,怎样在 Clarius 软件中使用正确的测试设置来获得最好的测量结果。
  • 一文读懂RS-485收发器九大难题问题 您是否常常遇到RS-485收发器的相关难题?别担心!本文基于RS-485收发器的常见问题提供了一些见解……
  • 使用带有片上高速网络的FPGA的八大好处 尽管在FPGA中的按位来布线非常灵活,但其缺点是每个段都会给任何给定的信号通路增加延迟。需要在FPGA中进行长距离传输的信号会导致分段之间的连接延迟,从而降低了功能的性能。按位布线的另一个挑战是拥塞,它要求信号路径绕过拥塞,这会导致更多的延迟,并造成性能的进一步降低。
  • RMS所应了解的五件事 本文对下面五个与RMS相关的信息,着重强调了它们的实用价值:RMS是给定信号段的特定属性;滤波与求平均值不是一回事;RMS并非总是与功率有关;在采样系统中,RMS比均值更优;无法通过对连续的RMS结果滤波来提高精度。
  • 原子级工艺实现纳米级图形结构的要求 原子层刻蚀和沉积工艺利用自限性反应,提供原子级控制。泛林集团先进技术发展事业部公司副总裁潘阳博士分享了他对这个话题的看法。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了