广告

如何有效地检测碳化硅(SiC)二极管?

2021-01-04 Giovanni Di Maria 阅读:
如何有效地检测碳化硅(SiC)二极管?
对于电源开关应用,碳化硅二极管在效率和热性能方面也具备显著的优势。这种器件可以在更高的温度下运行,而温度是改变电子器件工作条件的重要因素。如果采用真正的SiC器件进行真实测试与仿真会更加有趣,这样可以评估仿真器以及SPICE模型的功效和实用性。本文的重点是如何有效地检测Sic MOSFET。

 roCednc

随着宽禁带半导体技术的日益普及,需要在高温和苛刻的电流循环条件下,对二极管操作进行各种耐久性测试,以评估其性能。毫无疑问,功率电子器件作为基本元器件,将在未来几年中持续发展。而新型碳化硅(SiC)半导体材料更是不负众望,它比传统硅材料导热性更佳、开关速度更高,而且可以使器件尺寸做到更小。因此,碳化硅开关也成为设计人员的新宠。roCednc

碳化硅二极管主要为肖特基二极管。第一款商用碳化硅肖特基二极管十多年前就已推出。从那时起,它就开始进入电源系统。二极管已经升级为碳化硅开关,如JFET、BJT和MOSFET。目前市场上已经可以提供击穿电压为600-1700 V、且额定电流为1 A-60 A的碳化硅开关。本文的重点是如何有效地检测Sic MOSFET。roCednc

roCednc

图1: 首款商用SiC MOSEFT-CMF20120D。roCednc

碳化硅二极管

最初的二极管非常简单,但随着技术的发展,逐渐出现了升级的JFET、MOSFET和双极晶体管。碳化硅肖特基二极管优势明显,它具有高开关性能、高效率和高功率密度等特性,而且系统成本较低。这些二极管具有零反向恢复时间、低正向压降、电流稳定性、高抗浪涌电压能力和正温度系数。roCednc

新型二极管适合各种应用中的功率变换器,包括光伏太阳能逆变器、电动车(EV)充电器、电源和汽车应用。与传统硅材料相比,新型二极管具有更低的漏电流和更高的掺杂浓度。硅材料具有一个特性,就是随着温度的升高,其直接表征会发生很大变化。而碳化硅是一种非常坚固且可靠的材料,不过碳化硅仍局限于小尺寸应用。roCednc

检测碳化硅二极管

本文要检测的碳化硅二极管为罗姆半导体的SCS205KG型号,它是一种SiC肖特基势垒二极管(图2)。其主要特性如下:roCednc

  • 反向电压Vr:1200 V
  • 连续正向电流If:5 A(+ 150℃时)
  • 浪涌非重复正向电流:23 A(PW = 10ms正弦曲线,Tj = + 25℃
  • 浪涌非重复正向电流:17 A(PW = 10ms正弦曲线,Tj = + 150℃)
  • 浪涌非重复正向电流:80 A(PW = 10μs方波,Tj = + 25℃)
  • 总功耗:88 W
  • 结温:+ 175℃
  • TO-220AC封装

roCednc

图2: 罗姆SCS205KG SiC二极管。roCednc

罗姆半导体公司的SCS205KG SiC二极管性能稳固,恢复时间短且切换速度快。其官方SPICE模型允许用户在任何条件下对器件进行仿真。roCednc

正向电压

首先,我们测量SiC二极管的正向电压。图3所示为一个简单的测试电路及其三维示意图,以及在不同的工作温度下,器件数据手册中有关正向电压的相关数据摘录。roCednc

roCednc

图3:SiC二极管的正向电压测试原理图。roCednc

测试接线图中,肖特基SCS205KG SiC二极管与一个阻值约6.7欧姆的电阻串联,以允许5 A的电流通过电路。其电源电压设置为36V。为了更好地优化功耗和散热性能,我们使用了十个并联的67欧姆电阻,以模拟单个6.7 ohm电阻。每个电阻的功率必须至少为20W。肖特基二极管SCS205KG的数据手册中明确了在各种工作温度下器件两端的电压值:roCednc

If=5A, Tj=+25℃: 1.4 VroCednc

If=5A, Tj=+150℃: 1.8 VroCednc

If=5A, Tj=+175℃: 1.9 VroCednc

这些数据说明了二极管两端的电压高度依赖于温度。因此,设计人员必须尽可能地抑制这种电压波动,以免影响最终的系统性能。我们使用如下的SPICE指令,在0℃至200℃的温度范围内进行直流扫描仿真,以测量功率二极管两端的电压:roCednc

DC temp 0 200 25roCednc

仿真结果返回了在不同温度下二极管上的电压值,这些数据完全符合器件数据手册中提供的指标。其中红色框中包含了文档中报告的测试温度。roCednc

roCednc

表1:温度与测得电压值。(麻烦将制作成表格形式)roCednc

如图4所示,随着温度的变化,绿色曲线表示二极管阳极上固定的36 V电压,黄色曲线表示阴极上的电压变化。其电位差构成了“正向电压”。由于阳极和阴极的电压之间存在代数差,从图中可以观察到器件上存在电位差。该测试必须在几秒钟内完成。roCednc

roCednc

图4:仿真在时域中测量SiC二极管的正向电压。roCednc

电容电抗

其次,我们测量SiC二极管的电容电抗。图5所示为简单的测试电路及其三维示意图。roCednc

roCednc

图5:SiC二极管电容电抗测试示意图。roCednc

在电路图中,肖特基SiC二极管SCS205KG与一个阻值低至约0.1欧姆的电阻串联。另有一个阻值很高的第二电阻与二极管并联。电源电压是设置为1 V的正弦波电源。我们可以执行如下的SPICE指令进行AC仿真,在200 MHz至2 MHz频率范围内,对功率二极管的电容电抗进行测量:roCednc

AC lin 1000 0.2Meg 2MegroCednc

仿真结果(参见图6)显示出在正弦波不同频率下的不同电容电抗。roCednc

roCednc

图6:该仿真在频域中测量SiC二极管的电容电抗。二极管表现为一个小型电容器,容值取决于所承受的频率。roCednc

如图7所示,我们采用如下公式测量二极管的电容电抗。它发生在频域中的AC。roCednc

IM(V(n002)/I(R1))roCednc

roCednc

图7:二极管电容电抗的计算公式。roCednc

二极管可以用电容器代替,以便用真实器件来执行另一个仿真。roCednc

反向电流

第三个要测量的是SiC二极管的反向电流。图8所示为一个简单的测试电路及其三维示意图,以及在不同的工作温度下,器件数据手册中有关反向电流的相关数据摘录。roCednc

roCednc

图8:SiC二极管反向电流的测试示意图。roCednc

电路图(图8)中,肖特基SiC二极管SCS205KG与一个阻值低至约0.1欧姆的电阻串联。电源电压是设置为1200 V的正弦波电源。二极管以反向模式连接。我们采用如下SPICE指令,执行DC仿真(扫频),测试在+ 20℃至+ 200℃的温度范围内流过二极管的反向电流。roCednc

DC TEMP 20 200 1roCednc

如图9所示,随温度变化,二极管上只有很少的反向电流经过。roCednc

roCednc

图9:该仿真测试了SiC二极管两端的反向电流在温度域的变化情况。roCednc

图10(电压V与电流I)显示了在+ 25℃的恒定温度下,当施加到二极管的电压在0 V至1200 V之间变化时,反向电流的变化曲线。roCednc

roCednc

图10:在25℃温度下,反向电流与施加到二极管上的电压关系图。roCednc

结论

碳化硅二极管具有非常快速的恢复时间,这可提高开关速率,并减小磁性元件和其它无源元件的尺寸,从而使最终产品具有更高的功率密度。对于电源开关应用,碳化硅二极管在效率和热性能方面也具备显著的优势。这种器件可以在更高的温度下运行,而温度是改变电子器件工作条件的重要因素。如果采用真正的SiC器件进行真实测试与仿真会更加有趣,这样可以评估仿真器以及SPICE模型的功效和实用性。roCednc

(本文授权编译自EDN姐妹网站Power Electronics News,原文参考链接:Examining a SiC diode。)roCednc

责编:Jenny LiaoroCednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 【免费报名】高性能计算(HPC)SoC设计的不同市场趋势和存 看直播学知识,还能赢取AirPods
  • 摩擦起电会是能量采集的下一个来源吗? 我们为何不持续寻找一种新的能量采集方式?因为它通常是免费的(忽略前期成本)、方便,并解决了许多实际的安装/更换问题。但是在能量达到可以采集之前,电子和负载方面有两个前端问题需要解决…
  • 那个曾是华为鸿蒙的最强对手,现在怎么样了? 笔者曾在一年前写过一篇:《华为鸿蒙OS最大的劲敌是谁?》,当时,鸿蒙OS(1.0)发布不久,风头无两,不过当时EDN/EETC捕捉到行业内还有一位默默耕耘不出风头的RT-Thread(以下简称RTT),在鸿蒙OS1.0发布之际,RTT装机量已经达到2亿。可是一年之内,鸿蒙OS已经升级到了 2.0,并从微内核转向终端与手机生态,那么,时隔一年之后,RTT怎么样了?还能成为鸿蒙(简称HM)的对手吗?
  • 高精度极限电阻的测试技巧 在“高性能被动元器件发展论坛”上,是德科技饶骞分析了传统的极限电阻测试中存在的问题,提出了针对不同阻值的极限电阻的精确测量手段和方法,包括三个部分:小电阻的高精度测量、超高电阻测量、材料漏电流或绝缘阻抗测量。
  • DDR5对比DDR4,重新做电路设计时要注意什么? DDR5是为了满足从客户端系统到高性能服务器的广泛应用,在省电性能方面持续增加的需求所设计;特别是后者正面临密集的云端与企业数据中心应用越来越高的性能压力...
  • 华为也要进军无人机? 无人机是一个看似高大上,实则非常难做而且目前市场容量还很小,但是不排除未来能够普及爆发,因此各大厂商都曾经或者想要进入。最近,看到华为也在储备这方面的专利。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了