广告

设计65W氮化镓PD适配器需要解决什么问题?

2020-11-02 15:34:14 顾正书 阅读:
近几年,随着智能手机的发展,手机的充电也从普通充电发展到快速充电,甚至超快充电。而快充或者超级快充一般都采用氮化镓(GaN)器件,最近,华为余承东表示:《华为已经掌握了200W无线充电技术》,随着快充/超级快充的功率越来越大,那么在设计方面也出现了一系列问题,其中比较重要的问题是电解电容的尺寸。

近几年,随着智能手机的发展,手机的充电也从普通充电发展到快速充电,甚至超快充电。而快充或者超级快充一般都采用氮化镓(GaN)器件,最近,华为余承东表示:《华为已经掌握了200W无线充电技术》,随着快充/超级快充的功率越来越大,那么在设计方面也出现了一系列问题,其中比较重要的问题是电解电容的尺寸。TC0ednc

 TC0ednc

OPPO、小米和华为纷纷推出65W甚至更高功率的快充适配器,采用氮化镓(GaN)器件已成为提升开关频率、快速充电和提高功率的有效途径。随着电池容量和充电器输出功率的提高,适配器设计工程师面临着元器件数量和设计复杂度增加而导致的产品尺寸增大的窘态,如何缩小电解电容的尺寸成了一个不小的难题。TC0ednc

客户需求和市场竞争永远是技术和产品创新的驱动力,智能手机很好地诠释了这一“定律”。由于手机的性能配置越来越同质化,手机厂商开始从手机往外延伸寻求新的差异化卖点。增加摄像头数量是一个招数,与手机配套的配件也可以成为独特的卖点,甚至可以带来额外的收入和利润,TWS耳机和氮化镓充电器就是两个典型代表。TC0ednc

OPPO、小米和华为纷纷推出65W甚至更高功率的快充适配器,采用氮化镓(GaN)器件已成为提升开关频率、快速充电和提高功率的有效途径。随着电池容量和充电器输出功率的提高,适配器设计工程师面临着元器件数量和设计复杂度增加而导致的产品尺寸增大的窘态。TC0ednc

一方面,采用氮化镓(GaN)器件可以提升开关频率,从而降低变压器的尺寸。但是,宽范围的输入电压需要大电解电容支持才行。由于世界各国的电网电压变化很大,比如中国的交流电电压为220V,相对比较稳定。而印度的电网电压波动比较大,从90VAC至350VAC不等。宽输入电压范围工作要求输入滤波电容具有更大的容量(低压时),以及更高的耐压额定值(高压时)。为支持更高的耐压,电容制造商必须增加电容的尺寸,导致体积增加很多。这样充电器的整体尺寸还是无法缩小。TC0ednc

TC0ednc

与此同时,消费者又期望充电器重量和体积更小,更轻便携带。如何解决这一矛盾呢?Power Integrations最新推出的MinE-CAP芯片很好地解决了这一问题,最高可将AC-DC转换器的体积缩小40%。TC0ednc

TC0ednc

据PI产品营销总监Chris Lee称,这种器件在很大一部分储能中主要使用低电压额定电容,这样可以使这些元件的体积随电压线性缩小。USB PD技术为市场普遍采用小型65W充电器提供了巨大的推动力,许多公司都在设法通过提高开关频率来缩小反激式变压器的尺寸。MinE-CAP的体积节省比开关频率翻倍的效果更大,同时还能有效提高系统效率。TC0ednc

在低压输入时,MinE-CAP可以增加低压工作的电容容量。而在输入电压增加时,又可以将增加的容量减除。在设计中,由高效PowiGaN 开关将低压电容接入直流母线,这样就可以优化选择两个电容,即具有低耐压额定值的高容量电容和具有高耐压额定值的低容量电容。TC0ednc

TC0ednc

MinE-CAP器件可利用PowiGaN氮化镓晶体管的小尺寸和低RDSon,根据交流输入电压条件,主动、自动连接和断开大容量电容网络的各个部分。使用MinE-CAP的设计人员可选用交流高输入电压所需的最小高额定电压大容量电容,并将大部分储能分配给低压电容,这些电容由MinE-CAP提供保护,直到在交流低输入电压下需要时为止。这种方法可大幅缩小输入大容量电容的尺寸(高达50%),而不会影响输出纹波、工作效率或无需重新设计变压器。TC0ednc

TC0ednc

传统的功率变换解决方案通过提高开关频率来使用更小的变压器,从而减小电源尺寸。创新的MinE-CAP IC不仅可以大幅缩小电源的整体尺寸,同时还能减少元件数,降低EMI,并且避免与高频设计相关的变压器/箝位损耗增加的挑战。它的应用范围包括智能手机充电器、家电、电动工具、照明和汽车等。TC0ednc

PI提供了一个信用卡尺寸大小的 65W USB PD PPS 适配器设计范例,其尺寸规格为:82x51x12 mm。TC0ednc

TC0ednc

如果不采用这种MinE CAP器件,将无法将电源缩减至信用卡大小的尺寸。因为电解电容的圆柱形形状会造成空间浪费,而MinE-CAP 避免了空间浪费,大大增加了空间利用率,从而简化PCB 板布局及生产装配。此外,MinE-CAP器件还可大幅减小浪涌电流,这有助于省去NTC热敏电阻,提高系统效率,并减少热耗散。TC0ednc

Power Integrations公司将在11月25日上海举行的“国际汽车电子高峰论坛”上分享大功率器件的应用设计,欢迎报名参加!TC0ednc

本文为电子技术设计原创文章,未经授权禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 工作原理梦说下嘛
顾正书
电子工程专辑(EETimes China)主分析师
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 意法半导体STM32U5系列MCU上新,提高物联网和嵌入式应用 Ajax Systems已使用 新STM32U5 MCU开发下一代无线安保和智能家居解决方案;新STM32U5系列MCU是首款获得NIST嵌入式随机数熵源认证的通用MCU
  • 电池管理系统创新如何提高电动汽车采用率 要在未来实现全电动化,需要进行电动动力总成系统创新,其中包括BMS、车载充电器和直流/直流转换器以及牵引逆变器。这些系统的核心是使电气化成为可能的半导体元件。
  • 使用SiC和GaN创建面向未来的电力电子器件 随着碳化硅(SiC)和氮化镓(GaN)等宽禁带器件的推出,电力电子技术发生了翻天覆地的变化。事实上,这些材料的特性使其特别适合在高压和高开关频率下所运行的应用,并能提供比最先进的硅基功率器件更好的效率和散热管理。
  • 如何大幅提高物联网设备的电池能效 本文探讨了如何使物联网(IoT)设备更加节能。在重点介绍毫微功耗运输模式和睡眠模式的关键作用之前,快速回顾了电池管理。 最后,提供了一种新的解决方案,与传统方法相比,它可以更好地优化电池管理的这两个方面,从而降低功耗水平和电路板空间。
  • 利用无线BMS实现智能电池生态系统解决方案 有关电池创新的新闻往往会突出新的电池封装概念和新材料,它们有朝一日可能能够比当今的锂电池技术储存更多的电量。电池的另一个部分——电池管理系统(BMS)——则往往不为人所知,但却需要跟进并以此来支持电池创新。
  • 软件定义电源让用户可控 传统上,AC/DC电源设计只能针对特定负载和线路条件进行优化。这源于在常用固定频率下的经典模拟控制和简单脉宽调制技术,这些限制通常会导致在极端工作范围内产生更高的元器件应力。
  • 小米预研固态电池技术前景诱人,能量密度突破1000Wh/L 3月1日,小米又宣布预研固态电池技术,通过将电解液替换为固态电解质,不仅能量密度突破1000Wh/L,更大幅提升低温放电性能和安全性,称“有望一举解决手机电池三大痛点”。
  • 胜过齐纳二极管的有源分流限压器 我需要用一个电路来限制某些耗散受限设备的电压。它必须将电压限制在最大1.5V,具有对称限制,能够接受2A的电流,并且在1V时漏电流小于100µA。可以用两个串联的齐纳二极管,阳极到阳极,达到目的,但稳压值为0.8V和2W耗散的齐纳二极管在市场上找不到。
  • 用于GaN HEMT的超快速分立式短路保护 GaN HEMT的保护电路必须比硅基MOSFET中使用的传统短路和过流保护方法更快。
  • 【电驱变革深探】: 从测试角度看800V超充技术下的电驱 市场调研数据显示,超过80%的用户对电动汽车的充电速度和续航里程表示不满,虽然新能源汽车市场在近几年飞速变化,但距离满足消费者心理预期的更高使用需求,尚有较大提升空间。预测数据显示,到2025年,800V SiC的市场占比将达到15%左右;不过在电动汽车全球发展提速的大趋势下,这一预测节点也许会提前到来。
  • LDO的运行困境:低裕量和最小负载 开关式DC-DC转换器可提高电源效率,有些器件的效率可超过95%,但是以增加电源噪声为代价,通常在较宽带宽范围内都存在噪声问题。低压差线性稳压器(LDO)常用于清除供电轨中的噪声,但也需要进行一些权衡考量,其功耗会增加系统的热负载。
  • Gridspertise和意法半导体20年合作新里程,赋能美国等地 意法半导体面向家庭的直接电力线通信(power line communication)通道将用于Gridspertise为美国市场开发的智能电表;赋能终端客户积极参与能源市场转型,促进分布式可再生能源整合和智能能源管理系统发展
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了