广告

当心回路增益

2020-03-12 John Dunn 阅读:
当心回路增益
本文利用一个总反馈为单位增益电压跟随器的运算放大器简化模型,对回路增益展开深入讨论。

这个主题我曾经讨论过,但这次会更深入地讨论它。图1中可以看到一个简化的运算放大器模型,其总反馈是一个单位增益电压跟随器。GXAednc

图1:具有完全反馈的简化运算放大器模型。GXAednc

所有运算放大器的频率响应都至少有两个极点。一个极点位于低频,称为F1,而第二个极点位于高频,称为F2。如果令C3为零,而使F3处没有极点,并且采用直线近似,那么总反馈频率滚降曲线如图2所示。GXAednc

图2:本条件下的总反馈频率滚降曲线。GXAednc

当F2处极点的频率大于0dB交越频率时,此滚降曲线通过该交越点时的斜率会非常接近-6dB/oct。在这种情况下,增益裕度和相位裕度很好,放大器不会发生振荡,也就是“稳定”。GXAednc

图3:如果F2下降到0dB交越点以下,则滚降曲线通过该交越点的斜率接近-12dB/oct。GXAednc

但是,如果较高频率极点F2的频率不够高——F2下降到0dB交越点以下,则滚降曲线通过该交越点的斜率会接近-12dB/oct(图3)。这时,增益裕度和相位裕度很差,很可能会导致振荡不稳定。GXAednc

我们这些老头儿还记得Fairchild µA709运放设计时就是如此。这款运算放大器不是“单位增益稳定”的,不能用作单位增益电压跟随器。Fairchild µA709的后继产品是µA741,其单位增益稳定。GXAednc

图4所示,如果再次将F2放回较高位置,但是引入极点F3,那么就会再次使通过0dB交越点的斜率为-12dB/oct,从而出现相同的不稳定性问题。GXAednc

图4:如果将F2设置到较高位置并引入极点F3,则会产生相同的不稳定性问题。GXAednc

当然,如果引入F3并将F2再次降低,则通过0dB交越点的斜率将为-18dB/oct,在这种情况下,运算放大器肯定会发生振荡。这个图就没必要再画了!GXAednc

现在来看看上述情况的实际结果。在图5的同相电路中,(a)电路运算放大器的反相输入与同相输入之间连有一个电容器C3,还有两个电阻器用来提供反馈。GXAednc

图5:此同相电路展示了上述情况的实际结果。GXAednc

再次参见图5,为了使围绕回路的反馈最大化,可以令可变电阻R开路,而为了进行回路稳定性分析,可以将C3从E1的零电源阻抗转移到地的零电源阻抗,如(b)中所示。将R3反馈电阻任意设置为10kΩ,并使用递归微分方程分析(一维有限元分析),可以检查输出信号的瞬态响应与C3处可变电容值之间的关系(图6)。GXAednc

图6:使用递归微分方程分析,可以检查输出信号的瞬态响应与C3处可变电容值之间的关系。GXAednc

例如,选择一个开环直流增益为100dB、低频极点F1为10Hz、高频极点F2为4MHz的运算放大器,可以获得1MHz的单位增益(0dB)交越频率。若是令C3选取几个不同的值,则可得到图7所示的几个结果。GXAednc

图7:方波信号Ein的输出响应。GXAednc

若干年前,我参加了美国长岛举办的一个研讨会,Bob Pease(那时他还在NS)在会上发言说,建议使用一个诸如C3的电容器,推荐值为1000pF。我提问说,这样一个电容器可能会由于相位裕量下降而导致反馈不稳定。“很高兴您提出这个问题!”他回答说。然后他将1000pF的建议值降低到100pF。GXAednc

即使那样,我仍然不希望这样做。最好是找到方法,让EMI完全远离运算放大器,而不是试着使用C3,使该运算放大器不受EMI输入的影响。Bob Pease最初建议的是1000pF,对于这个运放来说效果就不佳。使用100pF则会更好,但我个人的想法是完全避免使用任何C3,而去寻找其他方法来抑制EMI敏感性问题。GXAednc

John Dunn是一名电子顾问,毕业于布鲁克林理工学院(BSEE)和纽约大学(MSEE)。GXAednc

(原文刊登于EDN美国版,参考链接:Beware of loop gainGXAednc

本文为《电子技术设计》2020年3月刊杂志文章,版权所有,禁止转载。免费杂志订阅申请点击这里GXAednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
John Dunn
John Dunn是资深电子顾问,毕业于布鲁克林理工学院(BSEE)和纽约大学(MSEE)。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 电子的内在是否存在“生命”或者“意识”? 对于所有实体,无论是电子、原子还是分子,都是多少具有一点体会和感知的产物,最初可能只是一个奇怪的意识,但最终可能发展成非常丰富的感觉。
  • 碳化硅如何能够提升开关电源设计 谈起电源转换器的设计,诸如碳化硅(SiC)等宽禁带(WBG)技术是当今进行器件选择时的现实考虑。650V SiC MOSFET的推出使它们对于某些以前从没有考虑过的应用更具吸引力,这些器件在高效硬开关拓扑结构中表现出非常好的耐用性,因而是实现千瓦级电源解决方案功率因数校正(PFC)应用的理想选择。而且,由于它们还支持更高的开关频率,因此可以选择较小的磁性元件,从而缩小了许多设计的体积。
  • 5G时代有哪些关键的“省钱”技术? 大家都知道,对于运营商而言,要实现5G商业成功,既要拓展新业务增加收入来源,也要勒紧腰带尽可能节省TCO成本,否则,谈什么持续发展啊?那5G时代有哪些关键“省钱”技术呢?
  • 热搜的国产“阿法狗”有蹊跷!1年出新产品,2年迭代,技术和 近日,#中国公司研发机器狗超越世界纪录#这个话题冲上了微博热搜,阅读飙升至1.4亿。从2019年成立以来,仅用1年就推出新产品,2年迭代出的机器狗产品,速度就超过了MIT。所以,这家公司的技术和资金,都是从哪来的?
  • 何为LPTO技术?传iPhone 13终将使用120Hz高刷屏,苹果还 当iPhone12上市的时候,全球的果粉们都在期待着120Hz高刷新率的屏幕,然而,由于采用高通芯片,苹果不得不做出妥协。现在,再度传闻三星在为苹果把OLED生产线转换为LTPO生产线,苹果新机型iPhone 13会搭载120Hz LPTO高刷屏,这次,苹果还会让果粉失望吗?
  • 傅立叶变换有多牛?MP3、 JPG 和降噪耳机都靠它 傅里叶一直对热在材料内部和周围流动的方式很感兴趣,在研究这种现象的过程中,他推导出了傅立叶变换。傅立叶的重大突破是意识到复杂的信号可以通过简单地叠加一系列简单得多的信号来表示。于是,他选择通过叠加正弦波来完成这项工作。当然,当时的他不会意识到自己所做的贡献有多么重要。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了