广告

科普贴 | 用于5G的射频滤波器、其制造挑战和解决方案

2022-10-17 11:18:22 泛林集团 阅读:
射频滤波器是如何工作的,为什么它们如此重要,芯片制造商在制造蜂窝器件时面临的挑战,以及泛林如何帮助解决这些问题。

 10Kednc

作者:泛林集团客户支持事业部特色工艺副总裁David Haynes, Reliant Systems 高级客户技术经理Daniel Shin, Reliant Systems 业务发展总监 Lidia Vereen10Kednc

在这篇文章中,我们将探讨射频滤波器是如何工作的,为什么它们如此重要,芯片制造商在制造蜂窝器件时面临的挑战,以及泛林如何帮助解决这些问题。10Kednc

 10Kednc

频率和滤波器 10110Kednc

频率在自然界中随处可见,这就需要你确定它们的独特范围以过滤掉那些你不想听的频率,并分离出你想听的频率。10Kednc

滤波器的作用是降低或者最好消除我们不感兴趣的频率。例如,在听音乐时,立体声音响可以帮你过滤掉高音频率而专注于低音;使用相机,你可以过滤掉紫外光以提高图像质量。10Kednc

在蜂窝频谱中,大量可用的频率被划分为不同的通道,因此一个对话可以在一个频道上进行,而不会受到其他通道上同时进行的对话的干扰。然而,这只有在你能将一个通道与该频谱中的所有其他频率分离的情况下才有效。10Kednc

射频滤波能分离并使用一个通道中的特定频率,而不需要处理同时存在的所有其他通道。10Kednc

有四种方法可以过滤这些频率:10Kednc

  1. 滤掉高频,只通过低频
  2. 滤掉低频,只通过高频。
  3. 分离某些范围的频率,消除该范围以上和以下的所有频率,这个范围被称为“带”,这样的滤波器是“带通”滤波器。
  4. 只消除一个范围的频率,同时保持所有其他频率不变,这被称为“带阻”滤波器。

10Kednc

因此,射频滤波器对我们的现代蜂窝数据系统至关重要。每个通道都是一个频带,一些现代蜂窝电话中可能有多达60个带通滤波器,每个都分离一个通道。10Kednc

手机滤波器10Kednc

手机滤波器主要有两种。第一种是沿着滤波器的表面进行振动,这些被称为声表面波滤波器它们的造价往往较低,而且对蜂窝范围中的低频段效果最好。10Kednc

10Kednc

第二种类型是贯穿整个材料的振动,而不仅仅是表面,它们被称为声体波滤波器虽然制造成本较高,但它们可以处理蜂窝频谱的上游。10Kednc

10Kednc

射频滤波器制造的挑战和泛林的解决方案10Kednc

由于制造商一直面临缩小器件尺寸的压力,特别是在移动和物联网应用方面,射频滤波器的制造存在一些挑战,而且性能更好、更复杂的滤波器对精度有更高的要求。此外,滤波器的架构和使用的材料也在不断发展,以利用5G的更高频率和更大带宽。10Kednc

让我们详细了解一下射频滤波器制造中的一个关键步骤。10Kednc

10Kednc

以高效率沉积和刻蚀掺杂层10Kednc

领先的开发商正在寻求通过添加钪 (Sc) 来修改关键的氮化铝 (AlN层,以增加滤波器的带宽。这将改善氮化铝层的压电特性,并提高滤波器的最终性能。泛林集团在荷兰收购的Solmates公司专注于沉积这些拥有最佳掺杂程度和薄膜特性的AlScN薄膜。10Kednc

添加钪会产生一种更难刻蚀的材料,这会对产量产生负面影响。此外,刻蚀工艺必须以高选择性停止在底部电极层上——对底部电极内的任何刻蚀都会给器件良率带来负面影响。最后,与前几代器件相比,底部电极将更薄,在不影响底部电极的情况下实现均匀刻蚀成了挑战,也会影响到器件良率。10Kednc

泛林的Kiyo®系列刻蚀设备提供了克服这些挑战所需的高刻蚀率和选择性,可用于直径为200mm和300mm的晶圆并用于当今的大批量生产,在保持颇具竞争力的刻蚀率的同时,可以实现所需轮廓的高偏置功率。10Kednc

滤波器只是解决方案的一部分10Kednc

射频滤波器是这些新的射频系统的一个关键组成部分,但它们不是唯一的组成部分。滤波器与其他器件——如射频开关、低噪声放大器、功率放大器和天线调谐器——结合起来形成复杂的射频模块解决方案。许多这些其他的射频器件是使用RF-CMOS(互补金属氧化物半导体)或RF-SOI(绝缘衬底上的硅)技术制造的,但有特定的制造方案,允许将电容和电感元件集成到后段制程工艺这些元件对于器件在高频下的有效运行至关重要。就像滤波器制造中的挑战一样,这些额外的后段制程集成步骤也给泛林的工艺设备带来了新的挑战。10Kednc

沉积高质量的MIMCAP10Kednc

金属-绝缘体-金属电容器 (MIMCAP) 现在通常被集成到射频器件中。顾名思义,MIMCAP是由传导电信号和电力的金属层和在金属层之间提供绝缘的电介质层组成。电介质层通常是氮化硅,必须是高质量的、且与金属层有很好的粘合力。10Kednc

10Kednc

泛林的VECTOR® Express可以提供所需的高质量薄膜沉积,它的多站顺序沉积 (MSSD) 架构收紧了晶圆到晶圆的不均匀度,并保持卓越的晶圆内均匀度。10Kednc

采用低氧化钴的厚钝化层沉积10Kednc

一个经常被忽视的挑战涉及到最后的钝化层:它必须很厚以完全密封器件,确保不受环境影响。任何断裂或针孔都会影响器件的性能,因此需要沉积足够厚的膜以提供所需的密封性。这可能需要多道工序,因而大大降低产量且增加拥有成本。10Kednc

10Kednc

VECTOR® Express可以提供高质量的厚USG(无掺杂硅玻璃)薄膜沉积,并具有高生产率。与MIMCAP的应用一样,MSSD架构确保了出色的晶圆到晶圆的不均匀度和无针孔沉积,使其成为厚钝化层的首选设备。10Kednc

责编:Echo
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 机器人版的ChatGPT,谷歌新模型泛化能力大幅提高 7月28日,Google DeepMind宣布以训练AI聊天机器人的方式训练了一款全新的机器人模型Robotic Transformer 2(RT-2),这是一种新颖的视觉-语言-动作(VLA)模型,可以从网络和机器人数据中学习,并将这些知识转化为机器人控制的通用指令。
  • 头部跟踪功能如何提升您的空间音频体验 音频已成为我们使用媒体时沉浸感和逼真度的重要组成部分。当前的技术正在加强各种体验本身的沉浸式体验,让它们更加栩栩如生,但如果没有头部跟踪,由于大脑无法解决这种关键的含糊不清问题,这种沉浸感可能会被破坏。
  • 比科奇介绍其打造更加智能移动通信基础设施新愿景 比科奇在MWC上海世界移动通信大会期间介绍了其在引入人工智能(AI)等技术打造更加智能的移动通信基础设施方向的新愿景,包括致力于解决困扰行业的基站功耗等问题,以及人工智能技术与先进无线通信技术的结合等创新
  • 小尺寸大功率Harwin连接器子系列可从360° EMC后壳中 Harwin公司宣布其Kona大功率连接器子系列现已推出带后壳的产品。
  • 为所有PWM优化简单的模拟滤波器 关于如何为任意特性的PWM选择最佳滤波器元件值的讨论很少,更不用说针对一种设计中所提到的特定PWM(8位,1MHz时钟)。在本文中,我将介绍一种针对任意周期PWM优化这些更简单滤波器的方法。
  • Qorvo QSPICE为电源与模拟设计人员电路仿真带来革命 Qorvo宣布推出新一代电路仿真软件QSPICE,通过提升仿真速度、功能和可靠性,为电源和模拟设计人员带来更高水平的设计生产力。
  • TI无线MCU创新方案,助力用户加速拥抱物联网 7月21日,由AspenCore主办的“2023全球MCU生态发展大会”在深圳罗湖君悦酒店隆重举行,特邀请到MCU领域的领军企业之一德州仪器(TI)参加了“无线MCU分论坛”,论坛上,TI无线产品工程师魏天华分享了主题为“创新型无线解决方案,助力不断发展的互联世界”的演讲,为现场观众带来了TI最新的无线MCU系列,以及对于这一市场的深刻思考。
  • 降低侵入式风险,清华开发出“入耳式”脑机接口 近日,清华大学研究团队宣布开发出一种名为SpiralE BCI的脑机接口,该器件采用“入耳式”设计,使用者只需要将器件插入耳道,即可读取相应脑电波信息,侵入性远远低于其他的侵入式脑机接口设备。
  • TETRA标准被曝存在后门漏洞,1分钟内就能被破解 TETRA是由ETSI制定的开放性无线数字集群标准,据称该技术标准是世界上最安全、最可靠的无线电通信标准之一。而就在近日有研究人员发现该标准存在着多个安全漏洞,可以暴露通过该标准传输的敏感数据。
  • 射频能量采集让医疗应用能够使用无线电源 射频能量采集为许多应用提供了显著优势,但需要特别注意关键元器件,包括此方法所需的接收器天线和电源调节电路。
  • 中国首款量子计算机操作系统,本源司南PilotOS正式上线 近日,据安徽省量子计算工程研究中心的消息,本源司南PilotOS客户端终于正式上线。PilotOS客户端是本源量子完全自主研发的一款一站式学习与开发平台,用户可以直接进行本地量子计算编程,不需要联网使用,实现用户对量子计算软件服务“打开即用”,助力量子计算编程“小白”顺利成为量子计算编程开发者。
  • ST亮相MWC上海:升级版智能座舱,首款USB-IF认证芯片,带你 ST携智能出行、电源&能源、物联网&互联等领域的产品和智能解决方案亮相MWC上海展,并带来多款升级展品,让观众通过充分了解ST的创新技术和解决方案,领略科技之美,探索产业新动态。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了