广告

【示波器旅行指南 | 工程师如何开启一场说走就走的旅行?】之二:惬意“乘机”不动怒

2021-04-20 09:10:44 泰克科技 阅读:
【示波器旅行指南 | 工程师如何开启一场说走就走的旅行?】揭示了舒适旅行三要素,本文是第二篇《惬意“乘机”不动怒》。

前言:我是小泰。小泰一年可以测试上千台电子设备,但依旧有时间来一场说走就走的旅行他是怎么做到的呢?以太网的智能识别身份信息,快速通过安检;借助USB2.0快速通道及时到达候机口,买杯咖啡,刚好等登机DDR3航班能够将路程时间缩短三分之一,更快到达目的地航行中实时探测到微小气流颠簸,借助电子设备及时调整飞行姿势,小泰完全不受影响带上新买的降噪耳机欣赏音乐,享受安全舒适的旅行下了飞机,手机来电告诉我们智能汽车已经就位,Spectrum View软件将无形的波形还原成原始信号,使通话清晰顺畅,顺利提车智能无人驾驶汽车使得去往景点的路程变轻松,一键启动,酷的大屏显示实时路况,轻松无忧,一路好心情作为一个科技潮人,照片打卡少不了,利用MIPI总线功能设计的智能手机,还原的各种美景值得一条朋友圈确保旅途中必备的电子设备一直在线,稳定的电源支持必不可少9个旅行场景,小泰可以轻松给他们进行测试。ogzednc

小泰是?小泰是泰克MSO6B示波器,高达10G带宽、50G采样率、八个通道,帮助工程师及时完成任务,又可以随心旅行。【示波器旅行指南 | 工程师如何开启一场说走就走的旅行?】揭示了舒适旅行三要素,本文是第篇《惬意“乘机”不动怒》。ogzednc

轻松查找和诊断功率完整性问题导致的抖动

ogzednc

航行中实时探测到微小气流颠簸,借助电子设备及时调整飞行姿势。Jitter抖动是对信号时域变化的测量结果,它从本质上描述了信号周期距离其理想值偏离了多少。在高速系统中,时钟或振荡器波形的时序误差会限制一个数字I/O接口的最大速率。不仅如此,它还会导致通信链路的误码率增大,甚至限制A/D转换器的动态范围。抖动是相对于系统时钟测量的。采用嵌入式时钟的系统,也就是从数据跳变中恢复时钟,会降低低频抖动,但必须使用能够仿真精密时钟恢复方式的示波器来分析这些系统。ogzednc

泰克示波器能助您轻松查找和诊断功率完整性问题导致的抖动。6系列B MSO 混合信号示波器既有用户可编程的时钟恢复方式,又有许多标准指定的时钟恢复方式。ogzednc

信号完整性分析集中在发射机、基准时钟、通道和接 收机的 BER ( 误码率 ) 性能上。功率完整性分析集中在 PDN 提供恒压电源轨道和低阻抗回路的能力上。 信号完整性和功率完整性有着广泛的相关性。PDN可能会导致噪声和抖动。电路设计和各种元器件,如芯片封装、引脚、轨迹、通路、连接器,都会影响 PDN 的阻抗,进而影响提供的功率质量。ogzednc

不管我们是否通过模板测试,如果信号完整性仍存在问题,那么我们就要执行抖动分析。把抖动分成不同的成分和子成分,如下图所示。ogzednc

ogzednc

下图显示了抖动摘要测量,包括浴缸图、眼图、TIE 频谱和直方图、抖动测量结果和波形。ogzednc

ogzednc

揭开噪声的迷雾,发现真实的信号

ogzednc

戴上新买的降噪耳机,欣赏音乐,享受安全舒适的旅行。让示波器只显示输入信号,而不要掺杂其他的信号,就需要示波器更纯粹地表征信号。6B系列MSO的关键特色之一,并不仅仅是低噪声设计,而是实现了高分辨率下的低噪声,以及带宽高达10GHz时候的低噪声表现。超低噪声,可以让您看到从未见过的信号详情。ogzednc

示波器前端 ASIC 芯片 TEK061 实现超低的本底噪声。ogzednc

5 GHz 时为 12 位分辨率,200 MHz 时高达 16 位分辨率ogzednc

1 mV/div 和 1 GHz 时的噪声 <55 µVogzednc

50 mV/div 和 10 GHz 时的噪声 <1.25 mVogzednc

示波器探头是示波器使用过程中不可或缺的一部分,它主要是作为承载信号传输的链路,将待测信号完整可靠的传输至示波器,以进一步进行测量分析。示波器和探头搭配才构成一个完整的信号测量链路,如果只看重示波器而忽视探头的选择,那进入示波器之前的信号已经失真,再完美的示波器所测得的数据也有会误。同理,如果只看中探头而忽视示波器的选择,那再保真的信号也会受示波器本身噪声的影响,因此两者同样重要。 ogzednc

众所周知,示波器的模拟前端,包含衰减电路、缓冲电路和放大器电路都会引入噪声。这也是示波器的本底噪声的重要来源。通常都会将模拟前端的设计作为评价示波器噪声的表现的重要指标。泰克的MSO6 采用了全新设计的前端放大器 Tek061,在较小的伏特/格设置上实现了非常好的噪声性能。因此搭配低噪声示波器才能保证电源轨探头发挥优异的特性。ogzednc

下图为 MSO6 系示波器分别连接 TPR1000 电源轨探头和 TPP1000 普通无源探头情况下,对 3.3V 电 源轨的纹波测试结果,结果如下图所示,电源轨探头的测试结果比普通探头的准确超过 50%。ogzednc

ogzednc

下载示波器旅行指南https://www.tek.com.cn/-/media/china-marketing-documents/oscilloscope-travelling-guide-final.pdfogzednc

或申请私人定制“旅行”方案https://www.tek.com.cn/oscilloscope/6-series-mso-mixed-signal-oscilloscope,泰克专家根据您的测试需求为您配置专属测试方案。ogzednc

  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 美国国土安全部(DHS)被曝大量购买和使用手机定位数据 据EDN电子技术设计了解,美国公民自由联盟18日发表最新文件,称美国国土安全部(DHS)使用移动定位数据来追踪人们的行动,据悉美国公民自由联盟发表的记录多达数千页,其规模远远超过之前的认知。
  • 实施增材制造以推动创新 是否可以打印?这是 3D 技术世界中真实存在的问题,其中的 3D 打印,也称为增材制造,可以通过数字化仿真输出几乎所有物品,包括汽车。
  • 用于高达10kA功率扼流圈测量的晶闸管脉冲发生器 Bs&T Frankfurt am Main GmbH公司开发了一种基于晶闸管的新型脉冲发生器,并在各种感性功率器件上进行了测试。该脉冲发生器具有一些得益于晶闸管高脉冲电流处理能力的独特特性,与基于IGBT的系统相比,它具有一些主要优势。
  • 如何评估3D音频解决方案 沉浸式3D/空间音频,与XR/360视频相结合,给您带来宛若置身于茂密深林的视听体验——飘落的细枝在脚下嘎吱作响,一头鹿向东原跑去,当您的目光追着一只红衣凤头鸟而远去时,您能听见它扇动翅膀的声音。精准的头部跟踪有助于提供逼真的用户体验(UX),了解评估解决方案的关键因素,可以帮助您在不断发展的行业中找到方向。
  • 波兰网友拆德国产无线烟感,烟雾探测原来是这样实现! 本文将展示具有433MHz RF通信的CC-80型烟雾探测器的内部,我将指出它的各个部件都有什么作用,还将解释它如何检测烟雾。
  • 示波器也在向“触摸平板”进化:泰克MSO2 我曾是一名工程师,20多年前,还在上学的时候,每当老师给我们上实验课,我们就经常会去捣鼓那些放在实验室桌子上的“宝贝疙瘩”:示波器;工作以后,更是少不了与这些“笨重”的家伙打交道。后来慢慢的淡出了工程师的行业,但是依然在工作中看到各种技术支持人员每次要测试、调试的时候,就把“笨重”的设备搬到公司的检测室或者专业检测机构,进行各种各种的测试、检测、测量。当时脑海中就出现过这样的念头:为什么不能有一款“轻量级”、“便于携带”、“操控灵活”的示波器呢?
  • 采用加速度计的地震探测器 该设备无意取代地质研究所所使用的专业模型,也无法提供对地震事件的精确测量。它有助于在不提供距离或震级的情况下被动地确定地震事件。
  • 北京大学图灵班大四学生获SRC第一名,曾发多篇EDA一作论 北京大学学计算机科学系图灵班大四学生郭资政,获得本科生组全球第一名(First Place)。郭资政的研究兴趣包括组合优化问题的数据结构、算法设计和 GPU 加速,目前已直博本校集成电路学院。
  • 多分支时钟树中的抖动分析和最小化 时钟信号的抖动是电子电路中时序问题的主要原因,这其中有几个来源。在本文中,我们分析了时钟树中抖动的类型和来源,并讨论了良好的设计实践和认真的组件选择相结合如何有助于减少抖动的影响。
  • 百元以内的高性价比万用表 万用表大致分为指针型万用表和数字型万用表,现在指针型万用表的使用已经越来越少了,工程师更多使用的是精准度更高的数字型万用表,那么百元以下有哪些功能比较全的万用表呢?
  • 微软革新可折叠手机设计:内外360度折叠,无铰链无折痕 微软准备通过一种新设计颠覆可折叠智能手机市场!微软新专利显示,一种革命性的折叠机制可使可折叠屏幕既可以向内弯曲,也可以向外弯曲,实现 360 度的折叠。该设计将直接取消铰链并解决传统折叠方法所产生的折痕问题……
  • 2022年全国高校经费统计:清华大学人均预算56.78万元,“ 近日,2022年全国高校经费统计结果出炉,前六所高校已经连续三年霸榜。整体来看,“双一流”建设高校占据绝对优势,理工科院校经费多于文科,但大部分都有所增长。此外,好几所高校预算的复合年增长率超过了30%,如“国防七子”、云南大学、南昌大学等
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了