广告

电池电压侦测电路“踩坑”:分压电阻的精度竟然是5%,不是1%

2021-07-29 LR梁锐 阅读:
做过一个电纸书阅读器的项目,和Kindle是同类产品,产品中用到一个“电池电压侦测电路”,当时在这个电路上踩坑了……

做硬件,堆经验。P8sednc

做过一个电纸书阅读器的项目,和Kindle是同类产品:P8sednc

P8sednc

产品中用到一个“电池电压侦测电路”,当时在这个电路上踩坑了,电路本身倒是很简单:P8sednc

和大家分享这个电路的设计要点,以及当时的设计失误,帮助大家积累经验,以后不要踩这种坑。P8sednc

设计要点一:设定分压电阻的大小

这种便携式掌上阅读器,当然是内置锂电池的:P8sednc

 P8sednc

P8sednc

通过侦测电池电压来判断电池电量,是很常用的做法。侦测电池电压的电路非常简单:电池电压经过电阻R26和R62分压之后,给到主控芯片MCU的ADC引脚,通过ADC来侦测电池电压。为什么要分压?因为ADC引脚可直接侦测的电压范围没有4.2V这么高。在R62远远小于MCU的ADC引脚的输入阻抗的情况下,可以忽略ADC引脚的输入阻抗,这也是我们需要的。下面忽略ADC引脚的输入阻抗来计算两个电阻的分压,也就是:P8sednc

  • 侦测到的电压 = 电池电压  x  R62 / (R26 + R62)
  • 侦测到的电压 = 电池电压  x  150 / (300 + 150)
  • 侦测到的电压 = 电池电压  x  1 / 3

当电池电压为4.2V时,经过R26和R62分压,ADC引脚会侦测到1.4V:当电池电压为3.5V时,经过R26和R62分压,ADC引脚会侦测到1.17V:所以可以根据侦测到的电压来算出电池电压,也就是:P8sednc

电池电压 = 侦测到的电压 x 3P8sednc

查看MCU的数据手册,可以查到ADC引脚的输入阻抗。P8sednc

为了忽略ADC引脚输入阻抗的影响,R62要尽可能相对地小。P8sednc

但又不能太小,因为这个电路会一直消耗电池的电量,就算是关机状态下也一直在耗电。电阻太小会导致关机功耗变大,这里消耗9.3uA:P8sednc

P8sednc

对阅读器产品来说,可以接受了!P8sednc

设计要点二:降低纹波电压

为了精确测量电池电压,ADC引脚处的纹波电压要小。这里用了电容C32来滤波:P8sednc

P8sednc

为了避免受到干扰,ADC引脚的走线要尽量短,远离干扰源,走线包地处理。ADC引脚处的走线高亮显示如下(这个MCU是BGA封装):P8sednc

P8sednc

这里的走线不算短,不过经测试纹波电压小于50mV,满足要求。P8sednc

设计要点三:设定关机电压

阅读器配套的锂电池,充满电是4.2V。P8sednc

在电压降到3.5V时,经实际测试,阅读器的系统电压还能保持稳定,但继续放电容易导致死机,所以设定3.5V为关机电压。P8sednc

参考一款锂电池的放电曲线图,以1A电流放电时,一开始放电曲线很平缓。放电到3.5V再往后一些,蓝色的放电曲线呈陡涯式下降,这就是为什么电压变得不稳定了。见下图蓝色曲线的最右侧那一段:P8sednc

P8sednc

根据这款产品的实际测试情况,软件设定为当侦测到电池电压降到3.5V时,系统执行关机。也就是:P8sednc

  • 电池电压为4.2V时,屏幕显示电量为100%;
  • 电池电压为3.5V时,屏幕显示电量为0%,并执行关机动作。

有些电子产品本身功耗低,也不会瞬间拉取大电流,就可以在电池电压更低时才关机。P8sednc

设计要点四:注意分压电阻的精度

这个电路很简单,电性能测试也没发现什么问题。P8sednc

试产了100片电路板,装了几十台整机,各种测试都Pass,一切顺利。P8sednc

于是就批量5千台,准备交第一批货给客户。P8sednc

这是个定制项目,早就拿到订单,已经临近约定交货的日子。第一次正式批量,还是要谨慎。在贴片厂生产时,我全程跟线。P8sednc

P8sednc

生产总体比较顺利,我在产线上没事的时候,无聊地检查着电路图,突然心里一咯噔,发现这个电池电压侦测电路,分压电阻的精度竟然是5%,不是1%!P8sednc

P8sednc

一下子就懵了!P8sednc

电池电压侦测的精度非常重要,要知道如果MCU把3.7V的电池电压判断为3.5V,虽然相差才0.2V,但是电量差得可多了,会导致提前很多就关机。P8sednc

更糟糕的是,如果MCU把3.5V的电池电压判断为3.7V,那么系统不会在正确的电压执行关机。继续使用的话,在MCU将电池电压判断为3.5V之前,可能已经出现死机的情况。P8sednc

当时马上问产线还能不能改BOM,要更换物料,产线答复说5千片马上就要贴完,现在下更改单来不及了。。。P8sednc

悲剧了,只能考虑是否手工改板了。把板上5%精度的换成1%精度的,每块板要改2颗电阻,一共就是一万颗电阻。P8sednc

首先问产线拿了一盘精度为5%的电阻过来,测试看偏差具体是多少。结果发现虽然标称5%精度,实测精度并没有超过1%。测了几十个,基本是这种情况。P8sednc

这就有点意思了,好像还可以啊!换还是不换呢,陷入了纠结。P8sednc

最后的决定是,保守一点,换!P8sednc

于是很苦逼,产线上的熟练焊工并不多,临时给我找来一个,我俩一起改板5千片。P8sednc

一边改板,一边客户那里催着交货,真是惨痛的教训!P8sednc

最后:复盘经验

这个事情,是设计上还不够细心,对这个电池电压侦测电路的认识不够深刻,竟然没有重点检查电阻的精度。P8sednc

5%精度的电阻相对便宜,公司的出货量非常大,单板的成本降低一点点,多出来的利润可以很可观,所以大部分电阻是选用5%精度,个别有需要的地方才会用1%。P8sednc

所谓成本是设计出来的。P8sednc

值得一提的是,由于电阻精度对单板的成本影响较小,有些公司的硬件工程师为了方便,统一选用1%精度的,这样就不会出错,也减少了BOM中的物料种类。P8sednc

那么问题来了,你公司的情况是这么一刀切,还是区分精度使用?P8sednc

最后,有了这次手工改板5千的教训,以后每次用电阻,我都会仔细检查精度使用是否合理,也算是吃一堑长一智。P8sednc

另外,“电池电压侦测电路”的两个分压电阻,后来改为了使用0.1%精度,会更靠谱。P8sednc

(来源:公众号电路啊;作者:LR梁锐)P8sednc

责编:DemiP8sednc

  • 5%的精度,两个电阻串联极限是10%,这还能玩吗?况且还有芯片内置精度,一不小心就冲爆了。
本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 小型太阳能光伏电源的串联与并联线性稳压对比 对小型太阳能光伏阵列而言,使用线性稳压方案会比较简单。本设计实例将针对此类系统解读,重点关注串联稳压器拓扑与并联稳压器拓扑的相对优势。
  • 使用BLDC电机助力机械扫描激光雷达实现360度视场 激光雷达系统的视场 (FOV) 决定了激光雷达能够捕捉到的图像的宽度,因此该视场对于自动驾驶决策算法十分重要。扩大FOV的方法有很多种,其中之一就是利用机械扫描,使用电机帮助实现360度FOV。无刷直流 (BLDC) 电机可以实现此目标,且高效低噪,因此广受欢迎。
  • 如何设计小型USB-C PD和PPS适配器 为了实现先进的USB电源协议,除了反激式控制器外,设计工程师还需要使用专用的USB控制器或微控制器。这两个IC之间还需要低时延通信,确保整个解决方案符合USB协议。
  • SMPS电感的安装方向会影响辐射吗? 开关模式电源(SMPS)产生的EMI辐射频谱是由许多参数组成的函数,包括热回路大小、开关速度(压摆率)和频率、输入和输出滤波、屏蔽、布局和接地。一个潜在的辐射源是开关节点,在很多原理图上称为SW。SW节点铜可用作天线,发射快速高效的高功率开关事件产生的噪声。这是大多数开关稳压器的主要辐射源。
  • 如何使用LTspice仿真来解释电压依赖性影响 问题:如何在电路仿真中考虑多层陶瓷电容器(MLCC)的直流偏置影响?答案:使用LTspice的非线性电容功能和合理的模型。
  • 细说车载充电机的功能与趋势 考虑到车载充电机(OBC)的整体硬件功能模块,设计人员应解决以下问题:对交流电源输入进行交流整流和功率因素校正(PFC);初级侧DC-DC;次级侧整流(无源或有源);如果是双向的,还要进行次级DC-DC控制…
  • 如何为SiC MOSFET选择合适的栅极驱动器 尽管碳化硅(SiC)具有开关速度更快和效率更高等一系列优势,但它也带来了一些设计挑战,我们可以通过选择合适的栅极驱动器来予以解决。
  • 自耦变压器和风扇 由于我的SPICE版本中并不包括自耦变压器,因此必须设计一个使用两个1:1匝数比变压器的模型...
  • 如何保护USB Type-C连接器免受静电放电和过热影响 移动设备工程师可以使用TVS二极管保护USB线路,使用数字温度指示器保护USB Type-C连接器,从而保护他们的设计。
  • DC/DC转换器功率降额规范中的挑战和替代方法 当今电子系统正在将更多的功能集成到更小尺寸中,但功能增多使功耗也会增加。因此,为了应对这一趋势,提供系统电压轨的DC/DC转换器必须以更小的封装实现更高的功率,即具有更高的“功率密度”。虽然目前的转换器设计可以具有非常高效率,但仍必须消散巨大热量以将关键组件保持在其最高额定温度以下。
  • 从技术角度分析,GaN和SiC功率器件上量还欠什么? 氮化镓(GaN)和碳化硅(SiC)这两种新器件正在推动电力电子行业发生重大变化,它们在汽车、数据中心、可再生能源、航空航天和电机驱动等多个行业取得了长足的进步。在由AspenCore集团举办的PowerUP Expo大会上,演讲嘉宾们深入探讨了包括GaN和SiC在内的宽禁带(WBG)器件的技术优势以及发展趋势。
  • Matter的核心:定义下一阶段智能家居的互操作性和无线技 在当今完全互联的世界里,使用各种智能家居的生活环境意味着需要同时与多种无线协议进行交互。照明系统、供暖和制冷系统、安全系统、娱乐系统——现在家庭生活的方方面面几乎都可以通过无线方式进行增强和控制。尽管无线技术的优势众多,但如今家庭中的无线连接并不是一帆风顺的。即便对于深谙各种先进技术的智能家居爱好人士来说,家庭网络中处理各种不兼容的无线协议也构成了挑战。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了