广告

电池电压侦测电路“踩坑”:分压电阻的精度竟然是5%,不是1%

2021-07-29 16:27:08 LR梁锐 阅读:
做过一个电纸书阅读器的项目,和Kindle是同类产品,产品中用到一个“电池电压侦测电路”,当时在这个电路上踩坑了……

做硬件,堆经验。IvLednc

做过一个电纸书阅读器的项目,和Kindle是同类产品:IvLednc

IvLednc

产品中用到一个“电池电压侦测电路”,当时在这个电路上踩坑了,电路本身倒是很简单:IvLednc

和大家分享这个电路的设计要点,以及当时的设计失误,帮助大家积累经验,以后不要踩这种坑。IvLednc

设计要点一:设定分压电阻的大小

这种便携式掌上阅读器,当然是内置锂电池的:IvLednc

 IvLednc

IvLednc

通过侦测电池电压来判断电池电量,是很常用的做法。侦测电池电压的电路非常简单:电池电压经过电阻R26和R62分压之后,给到主控芯片MCU的ADC引脚,通过ADC来侦测电池电压。为什么要分压?因为ADC引脚可直接侦测的电压范围没有4.2V这么高。在R62远远小于MCU的ADC引脚的输入阻抗的情况下,可以忽略ADC引脚的输入阻抗,这也是我们需要的。下面忽略ADC引脚的输入阻抗来计算两个电阻的分压,也就是:IvLednc

  • 侦测到的电压 = 电池电压  x  R62 / (R26 + R62)
  • 侦测到的电压 = 电池电压  x  150 / (300 + 150)
  • 侦测到的电压 = 电池电压  x  1 / 3

当电池电压为4.2V时,经过R26和R62分压,ADC引脚会侦测到1.4V:当电池电压为3.5V时,经过R26和R62分压,ADC引脚会侦测到1.17V:所以可以根据侦测到的电压来算出电池电压,也就是:IvLednc

电池电压 = 侦测到的电压 x 3IvLednc

查看MCU的数据手册,可以查到ADC引脚的输入阻抗。IvLednc

为了忽略ADC引脚输入阻抗的影响,R62要尽可能相对地小。IvLednc

但又不能太小,因为这个电路会一直消耗电池的电量,就算是关机状态下也一直在耗电。电阻太小会导致关机功耗变大,这里消耗9.3uA:IvLednc

IvLednc

对阅读器产品来说,可以接受了!IvLednc

设计要点二:降低纹波电压

为了精确测量电池电压,ADC引脚处的纹波电压要小。这里用了电容C32来滤波:IvLednc

IvLednc

为了避免受到干扰,ADC引脚的走线要尽量短,远离干扰源,走线包地处理。ADC引脚处的走线高亮显示如下(这个MCU是BGA封装):IvLednc

IvLednc

这里的走线不算短,不过经测试纹波电压小于50mV,满足要求。IvLednc

设计要点三:设定关机电压

阅读器配套的锂电池,充满电是4.2V。IvLednc

在电压降到3.5V时,经实际测试,阅读器的系统电压还能保持稳定,但继续放电容易导致死机,所以设定3.5V为关机电压。IvLednc

参考一款锂电池的放电曲线图,以1A电流放电时,一开始放电曲线很平缓。放电到3.5V再往后一些,蓝色的放电曲线呈陡涯式下降,这就是为什么电压变得不稳定了。见下图蓝色曲线的最右侧那一段:IvLednc

IvLednc

根据这款产品的实际测试情况,软件设定为当侦测到电池电压降到3.5V时,系统执行关机。也就是:IvLednc

  • 电池电压为4.2V时,屏幕显示电量为100%;
  • 电池电压为3.5V时,屏幕显示电量为0%,并执行关机动作。

有些电子产品本身功耗低,也不会瞬间拉取大电流,就可以在电池电压更低时才关机。IvLednc

设计要点四:注意分压电阻的精度

这个电路很简单,电性能测试也没发现什么问题。IvLednc

试产了100片电路板,装了几十台整机,各种测试都Pass,一切顺利。IvLednc

于是就批量5千台,准备交第一批货给客户。IvLednc

这是个定制项目,早就拿到订单,已经临近约定交货的日子。第一次正式批量,还是要谨慎。在贴片厂生产时,我全程跟线。IvLednc

IvLednc

生产总体比较顺利,我在产线上没事的时候,无聊地检查着电路图,突然心里一咯噔,发现这个电池电压侦测电路,分压电阻的精度竟然是5%,不是1%!IvLednc

IvLednc

一下子就懵了!IvLednc

电池电压侦测的精度非常重要,要知道如果MCU把3.7V的电池电压判断为3.5V,虽然相差才0.2V,但是电量差得可多了,会导致提前很多就关机。IvLednc

更糟糕的是,如果MCU把3.5V的电池电压判断为3.7V,那么系统不会在正确的电压执行关机。继续使用的话,在MCU将电池电压判断为3.5V之前,可能已经出现死机的情况。IvLednc

当时马上问产线还能不能改BOM,要更换物料,产线答复说5千片马上就要贴完,现在下更改单来不及了。。。IvLednc

悲剧了,只能考虑是否手工改板了。把板上5%精度的换成1%精度的,每块板要改2颗电阻,一共就是一万颗电阻。IvLednc

首先问产线拿了一盘精度为5%的电阻过来,测试看偏差具体是多少。结果发现虽然标称5%精度,实测精度并没有超过1%。测了几十个,基本是这种情况。IvLednc

这就有点意思了,好像还可以啊!换还是不换呢,陷入了纠结。IvLednc

最后的决定是,保守一点,换!IvLednc

于是很苦逼,产线上的熟练焊工并不多,临时给我找来一个,我俩一起改板5千片。IvLednc

一边改板,一边客户那里催着交货,真是惨痛的教训!IvLednc

最后:复盘经验

这个事情,是设计上还不够细心,对这个电池电压侦测电路的认识不够深刻,竟然没有重点检查电阻的精度。IvLednc

5%精度的电阻相对便宜,公司的出货量非常大,单板的成本降低一点点,多出来的利润可以很可观,所以大部分电阻是选用5%精度,个别有需要的地方才会用1%。IvLednc

所谓成本是设计出来的。IvLednc

值得一提的是,由于电阻精度对单板的成本影响较小,有些公司的硬件工程师为了方便,统一选用1%精度的,这样就不会出错,也减少了BOM中的物料种类。IvLednc

那么问题来了,你公司的情况是这么一刀切,还是区分精度使用?IvLednc

最后,有了这次手工改板5千的教训,以后每次用电阻,我都会仔细检查精度使用是否合理,也算是吃一堑长一智。IvLednc

另外,“电池电压侦测电路”的两个分压电阻,后来改为了使用0.1%精度,会更靠谱。IvLednc

(来源:公众号电路啊;作者:LR梁锐)IvLednc

责编:DemiIvLednc

  • 5%的精度,两个电阻串联极限是10%,这还能玩吗?况且还有芯片内置精度,一不小心就冲爆了。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 仿真器智能,工程师更聪明! 不要过度依赖SPICE仿真器的自动设定,因为过度相信自动化有时可能引发错误。请记得:仿真器智能,工程师更聪明!
  • 儿童电子学(二):电容器 电容器是最重要的电气元件之一,我们将在儿童基础电子课程的第二部分了解它的工作原理我们将从储能功能方面对其进行探索,所进行的测试和实验将侧重于这一要素。
  • 碳化硅电力电子应用不止于汽车 第三代宽禁带半导体——碳化硅(SiC)——正在发挥其众所周知的潜力,在过去五年内,汽车行业一直是该材料的公开试验场。然而,电气化议程不会以汽车开始和结束。更广泛的运输应用将很快出现,包括卡车和公共汽车、船舶和航运、火车的进一步电气化,甚至飞机。在供电方面,并网太阳能发电系统和通过高压直流链路传输能源,对于低碳能源的生产和分配也至关重要。
  • 增强型GaN HEMT的漏极电流特性 增强型GaN基高电子迁移率晶体管(HEMT)已经采用两种不同的结构开发出来。这两种增强型结构是金属-绝缘层-半导体(MIS)结构和栅极注入晶体管(GIT)结构。MIS结构具有受电压驱动的小栅极漏电流,而GIT则具有脊形结构和高阈值电压。两者也都有一些缺点。MIS对栅极干扰的可靠性较低,阈值电压较低,而GIT的栅极开关速度较慢,栅极漏电流较大。
  • 利用反极性MOSFET帮助555振荡器忽略电源和温度变化 恒定频率振荡器是555定时器的经典应用之一。然而,由于所用二极管的特性不理想,占空比的间隔会随着温度和V+电源的变化而变化。本设计实例给出了一种解决方法:利用反极性P沟道MOSFET引导电容的充电电流而不产生任何明显压降。
  • 儿童电子学(一):LED 电子是当今的热门话题,许多孩子们也期望了解并掌握这个重要技术的基本原理。本文是一个面向孩子们的基础电子课程,将并以简单有趣的方式教他们基础知识,激发他们的兴趣。
  • 让智能手表摆脱手机束缚 智能手表迄今为止仍被普遍视为智能手机配件。尽管智能手表时尚酷炫,但是当您必须随身携带手机时,它的存在就会略显多余。而且,并不是任意一款手机都能与智能手表相兼容。
  • 给电子设计初学者的一些实用技巧 本文将为初学者提供一些实用的布局、提示和技巧,可以帮助您避免事故或解决各种问题。该系列将不定期发布。
  • 经典电子小制作项目:DS18B20制作的测温系统原程序原理 下面介绍的这款DS18B20制作的测温系统,测量的温度精度达到0.1度,测量的温度的范围在-20度到+50度之间,用4位数码管显示出来。DS18B20的外型与常用的三极管一模一样,用导线将JK—DS的DA端连到P3.1上。连接好DS18B20注意极性不要弄反,否则可能烧坏。
  • MP1584降压电路官方手册有坑?资深工程师分享常用DC-DC 在最初使用MP1584降压电路时,发现照着芯片手册的官方给出的参数去设置,发现还是有坑的,经过修改后,目前这个降压电路已经使用了很多年,经过几千产品量的打板实践,个人感觉还是算稳定的。为了帮助大家避开官方手册以及其他的一些坑,笔者特地撰文与大家分享一个常用的DC-DC的电路设计……
  • 为什么步进电机的微步没有想象的那么好? 在使用步进电机设计运动控制系统时,不能假设电机的额定保持转矩在微步时仍然适用,因为增量转矩会大大降低。这可能会导致意外的定位误差。在某些情况下,增加微步分辨率并不能提高系统精度。
  • 适用于CSP GaN FET的简单高性能散热管理解决方案 本文将演示芯片级封装(CSP) GaN FET提供的散热性能为什么至少能与硅MOSFET相当,甚至更胜一筹。GaN FET由于其卓越的电气性能,尺寸可以减小,从而能在不违背温度限制的同时提高功率密度。本文还将通过PCB布局的详细3D有限元仿真对这种行为进行展示,同时还会提供实验验证,对分析提供支持。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了