广告

聚焦视觉引导机器人(VGR)

2021-08-16 Teledyne Imaging 阅读:
如何通过机器人与先进机器视觉的结合来应对复杂的自动化挑战

我们都看过机器人在几乎没有人工干预的情况下快速组装汽车的视频。像这样的工业机器人降低了几乎每个制造领域的成本并提高了生产率,但它们有一个主要缺点——它们无法“看见”。它们被编程为一遍又一遍地重复完全相同的动作,它们无法检测和操作形状、大小和颜色不一或者相互接触和叠放的物体。因此,如果产品发生变化或有新产品被加入生产线,则必须对机器人进行重新编程。如果产品组件通过传统的料斗和振动台输送到生产线上,则必须对振动送料机进行改造。5R7ednc

应对混乱状况

现在,由先进机器视觉引导的新一代机器人正在使机器人能做的远远不止是批量生产中常见的重复性任务。在更小、更强大、更便宜的相机和其他视觉传感器、越来越复杂的机器人算法和带有机器视觉特定硬件加速器的处理器的推动下,这些视觉引导机器人 (VGR) 系统正在迅速改变制造和履行过程。5R7ednc

VGR 使机器人适应能力更强,并且更容易在频繁推出新产品且生产周期短的行业(包括医疗设备和药品制造、食品包装、农业应用、生命科学等)中实施。[1]5R7ednc

例如,一家在中国运营一个大工厂的全球领先汽车制造商使用 Teledyne DALSA 的 GEVA 1000 视觉系统来确保两条装配线上的机器人牢牢地抓住零件,将它们放置在快速移动的传送带上。过去,零件是人工手动提放的。自动化将生产力提高了大约六倍。像这样的系统适用于杂乱不可避免或消除成本太高、或者生产线速度对工人来说太快的环境。先进的系统甚至可以解决可能最具挑战性的 VGR 应用程序,即从工厂和配送中心(例如亚马逊的大型自动化执行中心网络)的箱子中抓取大小、形状和重量不同的、随机分布的物体。5R7ednc

无序抓取

机器人从箱子中无序抓取零件是极具挑战性的,因为 VGR 系统必须在混乱的环境中定位和抓取特定零件。当机器人从箱子中取出零件时,其他零件可能会不断移动位置和转变方向。系统必须识别正确的物体,确定拿起它们的顺序,并计算如何在不与其他物体或箱壁碰撞的情况下抓住、提起和放置它们。这需要高性能机器视觉硬件、复杂的软件和足够强大的计算能力来实时处理大量视觉数据。5R7ednc

无论是带有集成视觉处理器的紧凑型智能相机(Teledyne DALSA 的 BOA Spot)还是复杂的激光和红外传感器以及高分辨率、高速相机,都可以作为机器视觉硬件。5R7ednc

3D 视觉怎么样呢?

VGR 系统通常使用不止一种类型的传感器来构建 3D 图像。例如,带有 3D 区域传感器的机器人可以定位并抓取箱中随机放置的零件。然后 2D 摄像头即时检测每个零件的方向,以便机器人可以将它们正确地放置在传送带上。5R7ednc

一些 VGR 系统通过将3D 飞行时间 (ToF) 扫描和快照 3D 图像捕获相结合,与单独使用扫描系统相比,它们获得的分辨率可以处理更广泛的对象,但不需要像传统快照相机系统那样移动相机。ToF扫描测量激光发出的光在相机和物体表面之间传播所需的时间以确定物体深度,具有在任何光照条件下工作的优势。5R7ednc

5R7ednc

结构光 3D 系统,例如微软用于视频游戏的 Kinect 传感器,在物体上投射不可见的红外光图案,然后通过使用 2D 摄像头检测该光图案的失真来生成 3D 深度图像。此过程可用于拣选箱中多个物体的 3D 映射。5R7ednc

强大的硬件和算法

这些先进的视觉系统能够使用FPGA处理器和专用集成电路 (ASIC) 等硬件加速器处理大量数据。这使他们可在生产线上和订单执行应用程序中处理数千个 SKU。5R7ednc

高级 VGR 系统的一个关键组成部分是算法,它能防止机器人及其手臂末端抓取工具与箱侧或其他物体碰撞。这种避免干扰的软件必须非常强大,因为每次从箱中取出物品时,都需要规划不同的路径,而且零件通常是堆放在一起、难以分清的。5R7ednc

展望未来

越来越多的 VGR 软件(包括与机器人和传感器无关的开源机器人操作系统 (ROS))将使机器人集成商能够更快、更轻松地提供 VGR 系统,并引入新的、更强大的、可用的传感器。5R7ednc

与此同时,机器视觉和机器人供应商正在密切合作,使 VGR 更易于使用。例如,机器视觉供应商开发了工具,使工程师可以更轻松地为机器人单元建模和优化传感器。他们还在开发易于最终客户使用的基于 Windows 的 VGR 系统。5R7ednc

由于这些创新,现在,消费电子产品(电路板级别以上的)和亚洲其他轻型组装中近 50%的机器人使用VGR。随着随机拣选技术迅速成为一种灵活、易于理解和可互换的商品,中小型公司如果希望减少人工干预、提高安全性和质量以及生产力,便可以使用它。5R7ednc

 =5R7ednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 小鹏进军“AI玩具”,要做儿童的第一个可骑乘智能机器马 小鹏汽车的生态企业鹏行智能这是鹏行智能发布了全球首款可骑乘智能机器马。这是鹏行智能智能机器马的第三代原型机,其内部代号为“小白龙”。前有小米首款仿生四足机器人"铁蛋",后有特斯拉AI机器人“Tesla Bot”,再到日前的鹏行机器马,为何新兴势力纷纷入场AI机器人呢?
  • 瑞萨电子RA MCU集成micro-ROS框架,简化专业机器人开发 瑞萨与eProsima携手,推动机器人技术在工业和物联网领域的应用;EK-RA6M5评估套件现已成为micro-ROS官方支持开发板。
  • 优傲机器人携手中德智能制造研究院拓展智造边界 ● 优傲机器人复合协作机器人部署在中德智能制造研究院,助力实施工业4.0智能生产落地设计;● 在中德院培训中心,UR机械臂与MiR100自主移动机器人紧密协作,流畅地完成每个站点的装卸工作和物料运输;● UR复合协作机器人适用于汽车、电子、机加工、物流、食品与饮料、生命科学以及消费品等行业
  • 波士顿动力官方揭秘Atlas跑酷的技术秘密 波士顿动力日前发布的Altas 跑酷再一次引起了关注及热议,Altas在视频中完成了过独木桥、跳箱子、走斜板、支撑跨栏、后空翻下台阶等动作。这些惊险动作是如何实现的?需要哪些技术支持呢?近日,波士顿动力在官方网站发布技术博客,详细解密Atlas奔跑、翻转、跳跃背后复杂而精妙的感知及控制机理。
  • 数据驱动农业4.0发展 在过去的两个世纪中,农业不可避免地受到工业化的影响,近年来农业4.0发展势头强劲。随着在工业生产中逐步采用数据管理,农业发展也紧随其后。以数据为中心的技术具有多样性,使农业可以像汽车和航空行业一样,成为这一技术的又一个试点行业。
  • MiR自主移动机器人发布市场首批IP52评级新产品MiR600 用于在具有挑战性的制造和物流仓库环境中运输重型物料。MiR1350将于2021年中国国际工业博览会全球首展。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了