广告

这根保险丝为何设计精巧却更易烧化?难道设计师故意为之?

2021-09-10 13:38:29 Jim Sylivant, 工程顾问 阅读:
从漂亮显微照片中可以看到保险丝采用了一种出人意料的结构:保险丝并非采用常见的低熔点单一合金,而是由三种金属构成。保险丝最中间的大大的圆形内芯是金属钨,钨的外面是一层薄薄的铜,铜层外面是一层薄薄的银......

在我职业生涯的中期,我成为了一名电子元件工程师。我刚到新部门不久,就遇到了一个难题:CRT显示器中一个简单的保险丝似乎具有很高的故障率,而且这个问题已经持续有一段时间了。新部门按照规格对样品进行了彻底的测试。之前的一个测试工程师设计了一个测试夹具,可以用来测试各批次的保险丝是否满足所有规格。该规范要求在一定的温度范围内,以及在冲击和振动之后,一定比例的保险丝在超过其标称额定值时必须在几毫秒之内断开。那个工程师的测试工作完成得非常出色,可以检验保险丝是否符合所有规格。N47ednc

然而,在应用中,高故障率仍然持续。我的第一步是测量应用中的实际电流,确保我们选择了合适的保险丝。我发现,除了短暂的启动小电流外,标称值很快就会稳定在保险丝额定值范围内。我不认为短暂的启动浪涌会导致问题。即使仔细查看了以前的测试结果和应用程序的测试,我仍找不到高故障率的原因。N47ednc

N47ednc

绝望中,我寄了一些样品到现场的材料实验室,请那里的同事帮忙测量保险丝的横截面直径,同时看看使用的合金。幸运的是,实验室将这项工作交给了一位非常称职的材料工程师,他让保险丝经受短暂的电流脉冲,然后对其进行分析,我们离真相更近了一步。几天后,他给我发来了漂亮的显微照片,我们看到保险丝采用了一种出人意料的结构。照片显示,保险丝并非采用常见的低熔点单一合金,而是由三种金属构成。保险丝最中间的大大的圆形内芯是金属钨,钨的外面是一层薄薄的铜,铜层外面是一层薄薄的银。N47ednc

而那个工程师在让保险丝经受短暂过电流后所拍摄的照片让人更是惊讶。他发现,通过将电容器充电到各种电压,并通过将其与保险丝短路来放电,他就可以产生可控大小的浪涌电流。照片显示,经过数次浪涌后,银覆盖覆层达到其熔点而熔化成液态。N47ednc

经过更多次浪涌,银完全熔化了,只剩下钨芯及薄薄的铜覆层。由于银的导电性非常高,几乎所有浪涌电流最初都完全流过银层。之后,额外的浪涌电流主要流过薄铜层,因为铜的导电性高于钨。薄薄的铜覆层最终也熔化了。现在,只剩下电阻高的钨芯了。随着更多浪涌的产生,现在所有的电流都必须流过剩下来的钨芯,钨的温度逐渐升高,变得越来越细,并最终烧化。N47ednc

我们随后意识到,这种三层结构技术使保险丝能够“记住”短暂的过载电流浪涌的积累。每次上电时的浪涌都会引起微小的变化,最终导致保险丝烧断。稳态测试并未测出这种情况。保险丝之所以具有记忆功能,是因为采用了三层特殊结构和三种金属。解决方案是改用只有一种低熔点合金的传统保险丝——即没有记忆的保险比。由此我们认识到,通过对基础知识的深入理解,可以解决大多数问题。N47ednc

网友分享N47ednc

@ lakehermit N47ednc

十分有趣的故事。我已经入行很多年了,仍在不断学习中。这个有趣的发现让我想到了一个问题:保险丝为何要采用三层结构?它肯定比一些纯金属或金属合金制成的简单拉制线要贵。这种设计是不是为了控制熔化时间与电流曲线呢?N47ednc

除非保险丝外皮填充一些惰性气体并密封,否则外皮中的氧气和湿气最终会侵蚀银,使银部分或全部变以为Ag2O 和/或AgO氧化银,这会增加银覆层的电阻。我怀疑这会在铜覆层中产生相同类型的“记忆”并最终导致故障。有没有可能这是一个有计划的故障设计,即使在没有浪涌电流熔化银覆层时也会发生故障?这样的话,保险丝公司就会卖出更多的保险丝。N47ednc

(原文刊登于Aspencore旗下EDN英文网站,参考链接:Blown fuse has a meltdown,由Jenny Liao编译。)N47ednc

本文为电子技术设计原创文章,未经授权禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 钨不是熔点极高吗?
  • 可能是为了达到环保要求,
  • 要根据浪涌电流、发生次数等重新选型。要用慢熔的。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 华强北改造美版iPhone 14 Pro,eSIM也能双卡槽 今年苹果iPhone 14系列美版直接全系都取消了实体SIM卡,全部使用eSIM,让许多想买“便宜北美机”的朋友望而却步。但神奇的华强北总能做出让消费者出乎意料的操作。华强北魔改美版eSIM版的iPhone 14 Pro,在原机中框上直接开了SIM卡槽……
  • 儿童电子学(九):简单的晶体管实验 在物理层面,晶体管的内部功能非常复杂,但是在实践中,在一些简单的实验中使用它却非常容易,每个人都可以负担得起。
  • 儿童电子学(八):七段LED显示器 在本文中,我们将分析一种由单个LED二极管所构成的更复杂有用的器件,即7段LED显示器。它的功能是再现十个数字和字母表中的一些字母。
  • 儿童电子学(七):电位器 在本文中,我们将了解如何使用最重要的可调节电子元件之一——电位器(电位计)——来创建具有可变强度的光。
  • 儿童电子学(六):降低电源电压 随着时间的推移,电池和电芯可提供固定的恒定电源。但在某些情况下,电路却经常要在较低的电源电压下工作,从而避免烧毁安装在其上的电子元器件。在本文中,我们将探讨一种将电源电压降低到所需值的简单技术。
  • 儿童电子学(五):生产清洁能源 宇宙充满了免费的能量。可悲的是,我们地球人却很乐意为开灯、启动汽车和使用电子设备所需的能量付费。说实话,宇宙是一个巨大的电池,可以以完全免费而又干净的方式产生不可估量的能量。应该让小朋友更加意识到这一点,因为使用清洁能源表明了人们的意识,并能为子孙后代享有更清洁的地球铺平道路。
  • 波兰网友玩中国产四位LED电子时钟套件,是否物有所值? 本文要介绍的是一款中国产电子时钟套件。购买的主要原因是希望获得一个MCU——目前在波兰市场上它并不比整个套件便宜多少——并检查与它相关的一件事,但最后却检查了更多。
  • 儿童电子学(四):连接电路 在儿童电子系列的第1部分中,我们研究了LED;在第2部分中,我们探讨了电容器;在第3部分中,我们深入研究了电气测量。在本文中,我们将重点介绍各种组件间的多种电气连接,串联和并联是最重要的两个连接方式。
  • 儿童电子学(三):电气测量 在本系列儿童电子学的第1部分中,我们研究了LED;在第2部分中,我们探讨了电容器。现在在第3部分中,我们将深入了解电气测量。
  • DIY一个简单的特斯拉音乐线圈 我一直想制作一个音乐特斯拉线圈,但我被互联网上的复杂结构示意图所淹没。前段时间,我发现了一个基于单个晶体管的线圈的示意图,并决定对其进行改进,以便它可以播放声音。我决定分享这个项目,以便其他人可以制作这样一个简单的线圈。
  • 波兰网友网购中国套件,DIY最简单的音乐节拍闪烁LED灯 大家知道,有很多资料都介绍过配合音乐节奏闪烁的LED灯。那为什么我又要重新探讨这个主题呢?因为我发现了一个中国产的电子制作套件,它只需要用到最少的元器件。
  • 华为天才少年稚晖君用108天打了个字,重新定义客制化键 自称“鸽王”的稚晖君终于更新啦。这次他带来的新项目则是:一把完全客制化、带屏幕模块的机械键盘!有网友表示,稚晖君的这个新项目,为键圈乃至整个键盘行业提供了新的设计思路,甚至有望改变目前客制化以换壳为本的囧境。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了