广告

新一代温度传感器IC可以在0.76mm2的封装内达到±0.4˚C的精度

2018-01-23 阅读:
新一代温度传感器IC可以在0.76mm2的封装内达到±0.4˚C的精度
IC设计人员历经波折,试图将温度对芯片系统的影响减到最小。峰回路转,一位IC设计师突然有了一个绝妙的想法:何不积极开拓利用有源电路p-n结的温度行为,而不是局限于绞尽脑汁将其影响最小化。

自集成电路出现以来,IC温度传感器一直是设备设计的一部分。设计人员想尽办法减少温度对芯片系统的影响,集成温度传感器已可轻松解决-55至200˚C温度范围内的大部分问题,而最新一代的温度传感器可以在0.76mm2的封装内达到±0.4˚C的精度。F8Dednc

自进入IC设计时代,集成电路(IC)温度传感器不经意就成为器件设计的一部分。IC设计人员历经波折,试图将温度对芯片系统的影响减到最小。峰回路转,一位IC设计师突然有了一个绝妙的想法:何不积极开拓利用有源电路p-n结的温度行为,而不是局限于绞尽脑汁将其影响最小化。而将数字功能集成到同一芯片的设计师更是脑洞大开,正是他们孕育出目前的温度传感器IC。F8Dednc

集成的温度传感器可以轻松解决-55至200ºC温度范围内的大部分温度感测难题。F8Dednc

输入端F8Dednc

温度传感器IC的输入是环境温度。换句话说,封装周围的环境温度会改变内部晶体管的行为(图1)。F8Dednc

052ednc20180123
图1:这一概念电路显示了匹配的晶体管如何检测温度。F8Dednc

温度感应设计通过巧妙的配置和计算来消除晶体管饱和电流(IS)的影响。使用恒流源(IC)以及晶体管和等同晶体管阵列之间的开关很容易控制饱和电流。F8Dednc

在图1中,我们看到VBE 和VBE(N)之间的差是如何轻松对应温度变化的。公式F8Dednc

(1)显示了晶体管基极-发射极电压VBE的值。F8Dednc

053ednc20180123F8Dednc

公式( 1)F8Dednc

其中:F8Dednc

k是玻耳兹曼常数,等于1.38×10-23J/K;F8Dednc

q等于1.6021765×10-19C;F8Dednc

T是以K为单位的温度。F8Dednc

公式(2)显示了许多并联晶体管的基极-发射极的VBE(N)值。F8Dednc

054ednc20180123F8Dednc

公式(2)F8Dednc

如果将电流源IC从一条引脚切换到另一条引脚,则公式(3)显示了这两个基极-发射极电压之间的差。F8Dednc

055ednc20180123F8Dednc

公式(3)F8Dednc

通过计算,得出:F8Dednc

CONSTANT=k × ln(N)/q 或86.25×10-6 × ln(N)。F8Dednc

从概念上讲,它让你知道如何在IC级快速测量温度。对图1中的电路做少许改进,IC温度感测精度可高达±0.4ºC。F8Dednc

输出端F8Dednc

现在我们有了准确的温度读数,如何向外界呈现此最终数值很重要。显示温度数据有两种基本方法:模拟电压或数字值。F8Dednc

模拟电压输出非常容易读取。使用适当的温度感应装置,你可以捕获模拟信号,将其转换为数字表示或回馈到电路中的某个点。F8Dednc

温度传感器的数字输出能力更有趣,有许多输出类型可选,但主要是1线、2线或3线输出。F8Dednc

1线数字输出可提供脉宽调制(PWM)的脉冲计数信号或简单的阈值/开关信号。这两种信号在风扇控制电路中都很有用。2线数字输出提供I2C或SMBus信号。数字结果是内部模数转换器的副产品。你还可以看到代表阈值温度和可能的错误条件的数字输出。3线数字输出提供一个SPI接口。F8Dednc

温度传感器件的晶圆级封装F8Dednc

每个产品都有从粗陋到精细的发展过程,温度传感器系列也在不断改进。该产品系列接下来将在器件封装的尺寸上有巨大突破。最新温度传感器件的外壳采用晶圆级封装(WLP)。F8Dednc

1998年,桑迪亚国家实验室和富士通开发了WLP。该封装在切割工艺之前,已完成晶圆级制造,其组装以标准的表面贴装技术(SMT)实现。F8Dednc

这种封装技术带来了超小型封装外形和低θ结-环境值。这一代温度传感器的尺寸使采用标准0603封装的标准0.1μF电容相形见绌(图2)。F8Dednc

056ednc20180123
图2:WLP温度传感器(U1/MAX31875)尺寸比SMT的0.1μF电容(C1)小。F8Dednc

在饭桌上F8Dednc

因为新封装尺寸小,你可以将温度传感器任意放置在PCB上,就像你做晚餐时撒盐和胡椒面一样。最新一代的温度传感器可以在仅占0.76mm2 PCB面积的封装内实现±0.4ºC的精度。F8Dednc

20160630000123F8Dednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • 对比传统机械手表,智能手表到底是好用? 你也是智能手表的使用者吗?或者你是坚决不用智慧手表的死忠模拟手表拥护者?你觉得智能手表跟传统单纯的模拟、机械手表比较起来,到底是好用?不好用?欢迎与大家分享你的心得与看法!
  • 为云端时代建立AI与IoT的相关论述 技术产业正处于两次重大技术革命的边缘——人工智能(AI)负责执行人类无法完成的任务,以及数十亿台设备连接到因特网。除了技术幻想之外,它还提出了更多相关的问题…EDN编辑团队正忙于寻找这些答案,并将以最能满足设计工程师讯息需求的方式呈现。
  • 新冠疫情下的自动驾驶产业 下滑的汽车销售量与营收所导致的车辆研发资金减少,将产生显著的影响;不过影响程度在车厂、汽车零组件供应商、高科技业者与资本投资业者(VC)之间会有所不同...
  • 北斗三号完成组网,在中国境内定位水平将超越GPS 刚刚,北斗三号最后一颗全球组网卫星在西昌卫星发射中心点火升空。 这是我国发射的第55颗北斗导航卫星;如果算上北斗试验导航卫星,这颗星则是第59颗北斗卫星。 随着该星进入预定工作轨道,北斗三号全球卫星导航系统星座部署全面完成。
  • 为何从不曾在高压电线上看到鸟儿? 我们经常看到成群的鸟儿栖息在树上、屋顶上、各区域的电线杆电线上,甚至无线电天线上。然而,我发现我从未看过鸟类停在高压电线上休息…这是为什么呢?
  • 苹果自研ARM架构电脑芯片,两年取代英特尔 发布会之后,有网友表示,Mac电脑用上自研芯片,并且可以运行iPhone和iPad App,那么在芯片完全相同的情况下,iPad Pro和Mac,在本质上还有什么区别吗?
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告
    向右滑动:上一篇 向左滑动:下一篇 我知道了