广告

检测高端电流

2018-01-26 Michael Dunn 阅读:
检测高端电流
本文用一个具体的例子比较在电压轨上完成电流检测的几种不同方法。第一种方法是使用带分立电阻器的单运放差分放大器;第二种方法是用V+而不是地作为参考轨;第三种方法在IC解决方案中很常见,在这种方案中,晶体管和运算放大器一起工作,以接地参考电流测量。

作为EDN“设计实例”栏目的编辑,我会面对很多设计投稿,有好的,也有不太好的。最近因种种原因弃掉的一篇文章讲到的高端电流检测电路,实现起来就有诸多问题。这让我想到了在电压轨上实现电流检测的不同方法。b1Mednc

绝大多数直流电流检测电路的核心设计思路,是从供电线路中的电阻下手(尽管磁场感应是个好选择,尤其是在电流较高的情况下)。人们只需简单地测量电阻两端的电压降,并根据需要调节阻值来读取电流(E = I×R,如果不包含这个,有人会抱怨)。如果检测电阻在接地支路上,那么方案就是个简单的运放电路。一切都以地为参考,只需特别注意接地布局中的小电压降就行了。b1Mednc

但通常首选方法是将检测电阻置于电源线中。为什么?因为接地可能不可行(例如,通过底盘接地汽车电子产品),或者你可能不希望设备接地与供电接地不同(这可能导致接地环路和其它问题)。那么,该怎么做?b1Mednc

最显而易见的方法是在检测电阻两端跨接一个差分或仪表放大器(inamp),但实际上这算不上好方法。为了准确检测电流,通常需要极高的CMR(共模抑制),既昂贵又容易漂移。b1Mednc

为什么这么说呢?我们来看一个设计示例:0-10A、12V标称值、5mΩ的感测电阻。b1Mednc

DI2-F1-201802

图1:最明显的高端电流检测方案使用差分放大器。b1Mednc

b1Mednc

这种方案甚至都不需考虑使用分立电阻,除非它们是精密匹配网络的一部分(因此,当然也就不是真正分立的)。对于1V的电源电压偏移和80dB的差分放大器CMRR(这意味着约0.01%的电阻匹配),你会看到相当于20mA的电流漂移(1V变化、80dB的CMRR导致输入0.1mV偏移,再除以5mΩ检测电阻的5mV/A标定)。b1Mednc

对于0-12V电源,在电压范围内乘以12:电压范围内240mA的偏移电流。b1Mednc

注意,真正的三运放仪表放大器对电阻匹配的灵敏度比单运放差分放大器低。但是,通常有更好的方法。b1Mednc

上文提到的“设计实例”使用了带有分立电阻的单运放差分放大器。实际上,一个电阻器可以用一个电位器进行调整,我最初认为它用于CMRR,结果却是增益调整!如果电源电压稳定,从某种意义上说,这种方法可行——但这绝不是一个好主意。b1Mednc

第二种高端检测方法需要一点横向思维。我改变思想,用V+而不是地作参考轨。这在概念上就像是负电压源的低端检测,如果你能摆平它,这就是个很好的方案。b1Mednc

DI2-F2-201802

图2:以V+为参考,对输出做进一步处理(例如,比较器)。R4可选,用于保护。b1Mednc

b1Mednc

第三种方法现在在IC方案中很常见,它用晶体管和运算放大器一起为电流测量提供地参考。当我想到倒置运放时,并不知道这个设计,这可能是件好事,因为节省了一只晶体管。b1Mednc

DI2-F3-201802

图3:ST的TSC103在回路中使用了一个BJT。b1Mednc

b1Mednc

DI2-F4-201802

图4:Linear的LTC6102使用一个MOSFET。b1Mednc

b1Mednc

意法半导体(ST)、美信(Maxim)和凌力尔特(Linear)都提供此类器件,但你自己也很容易实现这样的电路。b1Mednc

LM13700这样的OTA可以用作高端感测器吗?嗯……就把这个问题留给读者君思考吧。b1Mednc

《电子技术设计》2018年2月刊版权所有,转载请注明来源及链接。b1Mednc

20160630000123b1Mednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
Michael Dunn
Michael Dunn是EDN前主编。多年来他一直从事汽车、医疗、工业、通信和消费电子的设计,涵盖模拟、数字、微电子和软件领域。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • 剖析七种面向物联网的定位技术 在全球定位技术方面,GPS应用已非常成熟和广泛,但有一个遗憾是,它不支持室内定位。万物互联大背景下的定位要求是广连接、大范围、高并发和高精度,这就衍生了对定位技术的新需求。
  • 瓴盛首发AIoT芯片,在七个方面实现突破 瓴盛科技召开“2020 AIoT高峰论坛暨瓴盛‘芯视觉’产品发布会”,重磅发布了其首颗AIoT SoC产品JA310芯片(并且是一次流片成功)。EDN就从技术层面带大家了解下这款IC有哪些“过人之处”。
  • 苹果不支持北斗?或是这个原因! 近日,随着北斗三号全球卫星导航系统正式开通,一个热门话题在网上发酵开来:苹果到底有没有用上北斗导航系统?这个问题看似简单,但背后却缺乏充分的证据,而导致众网友正反方各执一词,争论得喋喋不休。 今天,EDN就想综合性地分析下,苹果到底支不支持北斗?如果不支持的话,那背后的原因又到底是什么?
  • 利用纸基生物燃料电池为一次性电子产品供电 锂离子电池存在的安全隐患以及可能对环境造成的不良影响,驱使厂商寻求成本更低且可持续的替代方案。纸基超薄便携式生物燃料电池系统使用生物催化剂代替化学或昂贵的金属催化剂,将天然基材转化为电力。
  • 一个关于FET的惊人事实! 出现故障的板子其实只有很少的几块,其电压和电流很低,故障不太可能是电路应力引起的。我推断最可能的罪魁祸首是……
  • 运营商喊话:电子行业亟需解决的5G三大难题 2019年6月份开始中国的5G牌照正式发放以来,中国5G已经初具规模,整个5G的商用全面加速、新基建更是开启了5G建设提速的窗口。 但对于运营商来说,仍有三大技术难题亟需解决。
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告
    向右滑动:上一篇 向左滑动:下一篇 我知道了