广告

缩短波长可能扩展EUV蓝图?

2018-10-16 11:53:22 Vivek Bakshi, EUV Litho总裁 阅读:
随着极紫外光微影(EUVL)将在今年大量使用,以及高数值孔径(NA)版本的开发,现在正是预先准备好下一步的时候了。

现在正是再次探讨缩短波长并了解其优缺点的时候了。我们不知道13.5nm和1nm之间的最佳选择,所以我将这种新技术选项称为Blue-X——其波长大约介于深蓝极紫外光(EUV)微影和X射线之间。L1rednc

缩短波长是持续扩展光学微影技术的一种选择,着重在短于13.5nm波长的光源和光学组件,这些将在不久的未来实现这一技术。L1rednc

升级至0.5的更高数值孔径(NA),将必须付出十分昂贵的代价。不仅工具成本将倍增至2.35亿欧元,较大尺寸的扫描仪也需要更庞大的费用来打造更大规模的晶圆厂。L1rednc

一旦采用高数值孔径作业,在考虑更高数值孔径带来更高成本的同时,也一并想到高数值孔径的多重曝光,这样可能更有意义。然而,缩短波长不仅能缩减数值孔径,从而有助于提高分辨率,同时降低工具成本以及功耗要求。L1rednc

以k1系数约0.3的单次曝光为例,在13.5nm波长时,0.33 NA达到12nm的分辨率,而在0.5 NA时可提高到8nm。业界一度关注的波长为6.7nm,但由于我们无法解决其功率问题,使得该选项缺乏带宽而被放弃了。L1rednc

相较于采用6.7nm波长,从0.33升级至更高NA有其优点:它让我们能保持相同的功率、多层(ML)和光罩等基础设施。毕竟,同时承担太多挑战并不是个好办法。L1rednc

我们已经了解如何根据雷射驱动电浆(LPP)、光学组件、污染控制和光罩等方面调整功率了,接下来将能把这些学问应用于专为较短波长设计的扫描仪上。因此,我认为现在正是重新审视缩短波长选项的时候了。我建议我们在考虑其他技术选择的优点和缺点时,一路持续关注至1nm。L1rednc

光源和光学挑战

过去,我们已经探索了11nm和6.6nm或6.7nm光源可能成为EUVL的较短波长了。氙(Xenon)可以提供11nm,而针对6.X-nm,铽(Tb)和钆(Gd)则被视为LPP光源的材料源。L1rednc

藉由增加目标材料的原子量Z,我们可以持续从LPP光源取得越来越短波长的光子。这些高Z材料并没有单一波长可发射,但有一组非常接近的未辨识转换数组(UTA)波长。L1rednc

总发射强度将对应于UTA的总振荡器强度,必须针对每一个可能的UTA评估其潜在的转换效率。L1rednc

这是一个很有意思的领域,提供了几种有趣的功能,如芯片的K边缘、碳窗(carbon window)和水窗(water widow)。针对水窗(X射线波长范围在2.34-4.4nm之间)近期已经有许多关于显微镜应用的开发。L1rednc

然而,在产生这种数百瓦较短波长光子方面存在若干挑战。最大的挑战之一在于驱动雷射所需的功率。针对6.X-nm,所需功率估计约为100kW,而13.5nm则需要~40kW。L1rednc

我曾经见过65kW CO2雷射的设计,但由于功率要求很高,此时可能值得研究其他替代激光技术了。俗称「星战计划」(Star Wars)的美国政府战略防御计划目前采用的是1微米100kW雷射。L1rednc

另一个具有吸引力的选择是美国劳伦斯利弗莫尔国家实验室(Lawrence Livermore National Laboratory;LLNL)的1.2微米雷射。它可以调整至300kW,同时保持小于CO2雷射的尺寸。L1rednc

当然,我们还必须关注在1.2微米时的转换效率(CE)。1微米Nd:YAG固态雷射的CE低于10微米CO2的CE。因此,在我们确定100kW驱动雷射的最佳选择之前,必须先弄清楚几件事。L1rednc

传输效率和光阻剂

为了保持与当今扫描仪类似的传输效率,我们将会需要类似于现有的功率和ML反射率。我怀疑如果我们牺牲一部份在这些区域缩短波长取得的增益,以缩短的波长来看,功率要求和数值孔径是否就能随之降低。L1rednc

6.7nm的ML反射率可能会类似于13.5nm,因而其成为一个理想选择。而对于其他波长的ML,获得高反射率的挑战将十分困难。L1rednc

在Blue-X区域探索的各种不同波长中,由于生物应用的前景,水窗(2.34-4.4nm波长)已经成为最主要的研究之一。例如OptiXfab最近展示用于水窗的ML收集器提升10倍性能,但反射率仍然不足30%,所以我们还有很长的路要走。L1rednc

对于较短波长区域的ML,接口粗糙度似乎是提高反射率的限制之一。针对ML研究的新化学物质可望有助于我们将反射率提高到可接受的数值。L1rednc

正如一位ML专家所说的,「我们喜欢有利的挑战……还记得我们在13.5nm达到的成果吧?」对此,我将满怀期待。让我们看看在拥有强大UTA下,较短波长可以为我们带来什么。L1rednc

(原文发表于ASPENCORE旗下EDN姐妹网站EETimes,参考链接:EUV Roadmap Needs ExtensionSusan Hong编译)L1rednc

本文为电子技术设计原创文章,未经授权禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 商务部暂停天然砂对台湾地区出口,台积电难受了 据EDN电子技术设计了解,商务部网站8月3日早晨8点发布最新消息,表示将从即日起暂停天然砂对台湾地区出口。不少网友认为暂停天然砂对台湾地区的出口,此举将严重影响台湾的建筑业,实则影响不仅仅如此。台湾地区天然砂进口量的90%以上来自大陆,而台湾芯片占台湾2021年出口额的34.8%。网友称商务部暂停天然砂对台湾地区出口是捏到了台湾半导体制造业的七寸。
  • 华盛顿大学首创用人体热能为可穿戴电子设备供电 从健康和健身追踪器到虚拟现实设备,可穿戴电子产品已成为我们日常生活的一部分,但找到持续为这些设备供电的方法是一项挑战。华盛顿大学的研究人员开发了一种创新的解决方案:首创的柔性、可穿戴热电设备,可将体热转化为电能。
  • 深圳允许完全自动驾驶车辆上路,主驾无需坐人 据EDN电子技术设计引援央视财经报道,从8月1日开始,《深圳经济特区智能网联汽车管理条例》正式实施,智能网联汽车列入国家汽车产品目录或者深圳市智能网联汽车产品目录,这也让深圳成为了国内首个允许L3级别自动驾驶车辆合法上路的城市。
  • 上海微系统所使用石墨烯纳米带研制出世界上最小尺寸的 非易失性相变随机存取存储器(PCRAM)被认为是大数据时代新兴海量存储的有希望的候选者之一。然而,相对较高的编程能量阻碍了 PCRAM 中功耗的进一步降低。利用石墨烯的窄边接触可以有效降低每个电池中相变材料的活性体积,从而实现低功耗运行。
  • 可解决工业自动化和IIoT挑战的MCU 工业自动化和工业物联网(IIoT)设计人员的性能要求不断变化。就MCU而言,他们希望获得更快的处理速度、更多的内存、更好的连接性和更多的安全功能。
  • 我国建成开通5G基站数达185.4万个 工信部近日透露,截至2022年6月底,中国5G基站数达到185.4万个,其中二季度新增基站近30万个,已建成全球规模最大、技术领先的网络基础设施,实现“县县通5G、村村通宽带”。。
  • 苹果发布2022财年第三财季业绩,营收829.59亿美元 Apple 今日公布了 2022 年第三财季的财务业绩。报告显示,苹果公司第三财季公布收入为 829.59亿美元,去年同期为 814 亿美元,同比增长2%;季度净利润为 194 .4亿美元,去年同期为217 亿美元,同比下降10.6%;其中,iPhone带来的营收406.7亿美元,同比增长3%。
  • 工程师开发出可以看到身体内部的贴纸 麻省理工学院的工程师设计了一种贴片,可以产生身体的超声图像。这种邮票大小的设备贴在皮肤上,可以提供 48 小时内脏器官的连续超声成像。
  • 美国参议院批准价值2460亿美元的芯片法案 美国参议院周三通过立法,以超过 750 亿美元支持国内半导体产业。GlobalFoundries、英特尔、三星代工厂、德州仪器、台积电和其他在美国建立半导体制造设施的公司或将受益。
  • 第三代半导体——碳化硅材料之制程与分析 SiC功率电子是加速电动车时代到来的主要动能。以SiC MOSFET取代目前的Si IGBT,不仅能使电力移转时的能源损耗降低80%以上,同时也可让芯片模块尺寸微缩至原本的1/10,达到延长电动车续航里程及缩短充电时间的功效。
  • 开源软件真的可靠吗? 乍看之下,采用开源软件似乎是个不错的办法,但归根究底,开源软件有几个特性可能会使其变得“邪恶”...
  • 俄罗斯要绕过5G直接开发6G!投资300亿卢布够吗? 在全球通信技术竞争上,中国的5G发展速度遥遥领先于其他国家,更多国家开始在6G上较劲儿。今日,“俄罗斯决定绕过5G直接开发6G网络”登上热榜,引起网友热议。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了