广告

信号带宽是什么?

时间:2019-04-08 作者:Bob Witte 阅读:
“带宽”这个术语在许多情况下已被滥用。工程师会问“这个信号需要多少带宽?”通常,这一问题涉及确保信号可以通过一个组件或系统传输、并在信号质量没有降低的情况下传输到另一端。

“带宽”这个术语在许多情况下已被滥用。我记得在一次会议上,这个词被用来指:特定信号的频率组成、特定电路的频率响应、局域网的速度,甚至组织的人数。“我们现在没有足够的带宽来处理这些工作。”也许没人注意到这些,但我发现它很有意思。

信号带宽

工程师会问“这个信号需要多少带宽?”通常,这一问题涉及确保信号可以通过一个组件或系统传输、并在信号质量没有降低的情况下传输到另一端。

图1显示了信号通过带宽有限的系统的情况。如图所示,系统有足够的带宽来传递信号且保持不变,这通常是期望的结果。当然,如果信号的频率组成超过系统的带宽,则输出信号质量可能显著降低。

DI6-F1-201904.JPG
图1:尽管系统带宽有限(低通滤波器),但足够传输信号而不失真。

如果我们谈论的是基本的正弦波形,“带宽是多少?”这一问题的答案可能显而易见:1GHz正弦波需要至少1GHz的系统带宽才能有效传输。如果我们使用-3dB点来描述系统带宽,响应将在该频率下衰减。例如,如果我使用1GHz示波器查看1GHz正弦波,所显示的波形幅度可能是实际值的70%(-3dB),具体取决于示波器带宽的裕量。

数字信号甚至更具挑战性,因为它们包含与波形的快速上升边缘相关的高频成分。Eric Bogatin在《Rule of Thumb #1:Bandwidth of a signal from its rise time》中解释了信号的上升时间与其带宽之间的关系。简单地说:

DI6-E1-201904.JPG

其中tr是上升时间(10%,90%),f3dB是3dB带宽。

这个等式对于具有单极低通响应的系统(想想“低通RC电路”)来说是精确的,对于许多性能良好的系统来说也是相当接近的。我最近发现了一篇Tektronix的老文章,讨论了垂直放大器响应和上升时间。文章展示了这两个阶跃响应图,一个是理想化的“高斯响应”,另一个是典型的低通RC电路(见图2)。

DI6-F2-201904.JPG
图2:高斯阶跃响应和低通RC电路阶跃响应。

我发现相关的评论很有意思,因为它们描述了上升时间和过冲(overshoot)之间的设计权衡。(因子K对应于上式中的0.35):

真正的高斯响应解析为tr•bw=0.32。由于几个因素的影响,示波器放大器不能满足真正的高斯响应要求。因此,“高斯”电路基本上是接近高斯的。通过多年研究得出的经验乘积定义了这些“高斯”电路。对于更高的高斯响应,tr•bw=0.35~0.45。较高的乘积表明上升时间缩短。但是,上升时间减少也伴随有过冲发生。0.45的乘积会导致5%的过冲,当tr•bw=0.35时,阶跃响应中的过冲很小(如果有的话)。Tektronix通常将乘积设置在K=0.35,牺牲上升时间以实现最小过冲。

K是品质因数,有时也称为上升时间带宽积(RTBP)。近年来,随着示波器制造商将可用带宽的上限推向新高,有时可以实现仪器响应的更陡滚降,而RTBP也发生了相应的变化。例如,Keysight UXR 110GHz示波器使用0.44的因数来指定10%/90%的上升时间。

回到正弦波

看完这一数字示例后,我一直在思考简单的正弦波。上升时间最适用于阶跃函数或方波,但它也可以应用于正弦波(虽然我承认它有点牵强)。考虑一个幅度为1、峰峰值幅度为2的正弦波(图3)。

DI6-E2-201904.JPG

DI6-F3-201904.JPG
图3:在此示例中,正弦波的上升时间是峰峰值幅度的10%到90%之间的时间。

我们来计算波形从负峰值的90%变为正峰值的90%所需的“上升时间”。如图所示,该上升时间为t2–t1。由于波形的对称性,可以看到:

DI6-E3-201904.JPG

这看起来不是那么有趣。相同的值0.35显示出正弦波频率和上升时间之间的关系。仔细观察会发现它略有不同:单极点情况下是0.356而不是0.350。0.35这一数字似乎有些特别,但还没达到普适常数(例如光速)的水平。

(原文刊登于ASPENCORE旗下EDN英文网站,参考链接:What’s that signal’s bandwidth?

本文为《电子技术设计》2019年4月刊杂志文章。

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
Bob Witte
Bob Witte在Keysight Technologies、Agilent Technologies和Hewlett-Packard Company的研发、技术规划、战略规划和制造部门担任过多个职位,目前是技术咨询公司Signal Blue LLC的总裁。 从内心深处,他只不过是一名乐于看到用创新产品来解决真正的客户问题的一名工程师。Bob写了两本关于测试和测量仪器的书:《电子测试仪器》和《频谱和网络测量》。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • “智能+”时代加速到来,高性能模拟技术助推智慧医疗落 随着中国政府在2019年政府工作报告首次提出“智能+”,业界预测诸多传统产业智能化升级的步伐将大大加快。而对于普通民众来说,“智能+”与医疗产业紧密结合的智慧医疗服务无疑与日常生活最为息息相关。
  • Middlebrook和Rosenstark的环路增益测量 测量负反馈电路环路增益T的两种常用方法是Middlebrook的双注入法和Rosenstark的开路/短路法。两种方法都适用于计算机仿真和在工作台上进行人工测试。本文指出了这两种方法的相似性、差异性和独特性,以免将它们混淆。
  • 合成电路内的可变电阻、电感和电容 虽然最初人们认为米勒效应只不过是会限制带宽和稳定性的不想要的寄生电容倍增器,但它现在已被有用的拓扑所采纳,如模拟示波器时基积分器。根据这样一个事实:如果放大器增益(A)可变,那么米勒阻抗(Zm)或电纳(Ym)也变,本设计实例提出了另一种使用它的好办法。
  • 蒙特卡罗出错了 工程师们进行蒙特卡罗分析并评估其结果的方式有可能是不正确的,错误理解蒙特卡罗分析结果可能导致不正确的技术和商业决策。在电路蒙特卡罗分析中,分析人员设定了会影响结果的每个元件特性的概率,并运行多电路仿真来找出给定函数的各种可能的结果。
  • 2019年中国最需要的十款创新国产IC 5月10日,一年一度的“松山湖中国IC创新高峰论坛”再次盛大举行。松山湖IC论坛已迈进第九个年头,2019年中国最需要的十款创新国产IC有哪些?
  • 经典架构新玩法:用单端仪表放大器实现全差分输出 在交叉连接电路中,输出的共模不会受电阻对失配的影响,因此始终都能实现真正的差分输出。而且,差分信号衰减是可能存在的,这就消除了采用漏斗放大器的必要性。最后,输出的极性由增益电阻的位置决定,从而为用户增加了更多的灵活性。
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告