广告

数字电位器仿真对数抽头以准确设置增益

2019-07-18 09:16:40 Stephen Woodward 阅读:
数字电位器(dpot)是一种常见的器件,采用各种封装、电阻和分辨率。若使用带对数抽头的高分辨率数字电位器,就很容易安排增益控制电路,在整个调整范围内提供恒定的分辨率(增量单位:dB)。遗憾的是,目前并没有具备出色分辨率(例如步进小于6dB)的对数数字电位器。

数字电位器(dpot)是一种常见的器件,采用各种封装、电阻和分辨率。但是,除了电阻和设置之间的常规线性函数,它并无其他效用。对于需要宽动态增益调整范围(例如数十倍频程)的应用来说,这会造成一些问题。BKZednc

以一款放大器为例,你使用8位(1/256)分辨率电位器,将其增益设置为0至10000(80dB)。当电位器设置与电阻(线性锥度)成线性关系时,数字电位器设置与增益也成线性关系。在256个电位器设置中,每个步进都表示约40的增益幅度增加(即增益步进为0、40、80、120、160等)。BKZednc

对于8或以上的数字电位器设置(增益>300),这给增益设置提供了不错的分辨率,可以实现每个步进1dB或更低的增益控制。但是,当设置值低于8时,增益分辨率大幅降低。例如,如果需要将增益设置为100或以下,就没有办法让所需的值具有有效的精度,因此只能选择80或120左右的值。BKZednc

若使用一个带对数抽头的准确、稳定、高分辨率数字电位器(电阻对数与设置成正比),就很容易安排增益控制电路,在整个调整范围内提供恒定的分辨率(增量单位:dB)。遗憾的是,目前并没有具备出色分辨率(例如步进小于6dB)的对数数字电位器。BKZednc

但并非全无用处。图1所示的设计实例就采用了一个普通的线性抽头电位器(例如,ADI提供的价格便宜的双极AD5200),实现了近似的对数增益控制。BKZednc

DI3-F1-201907.jpgBKZednc
图1:线性数字电位器仿真对数抽头。BKZednc

如果Dx表示游标设置(0~255),我们可以采用分段求解的方式,轻松得出放大器增益Vout/Vin与Dx的设计公式。BKZednc

首先,求解作为Vin函数的游标电压(Vw):BKZednc

DI3-E1-201907.pngBKZednc

接下来,求解作为Vw函数的Vout:BKZednc

DI3-E2-201907.pngBKZednc

然后,将公式1和2结合在一起:BKZednc

DI3-E3-201907.pngBKZednc

毫无疑问:BKZednc

DI3-E4-201907.pngBKZednc

BKZednc

DI3-E5-201907.pngBKZednc

由此得到:BKZednc

DI3-E6-201907.pngBKZednc

DI3-F2-201907.jpgBKZednc
图2:dB增益(左侧y轴)和增益设置分辨率(右侧y轴)与Dx(x轴)之间的关系。BKZednc

认真看看得出的增益公式,可以看到这些有意思的地方:BKZednc

1.Dx/(255-Dx)的近似对数性质。如图2所示,当R2/R1=100、Dx=8时,得出的增益=~10dB;Dx=23时,增益为20dB;Dx=128时,增益为40dB;Dx=232时,增益为60dB;Dx=247时,增益为70dB。在整个60dB=1,000~1的范围内,增益设置的分辨率仍然不超过1dB,这一点尤其重要。此外,Dx=0时,增益设置为0,同时Dx=255选择开环。BKZednc
2. 采用电位器游标作为输入端子的策略有效地将游标触点移动到放大器A1的反馈回路中(图1),从而避免了成为误差项,改善了增益设置的时间和温度稳定性。BKZednc
3. 同时,在A1反馈和A2输入(图1)端使用RAB电阻元件可以将RAB公差和温度系数(tempco)(AD5200中分别为±30%和500ppm/℃)与灵敏度进行比较,使R1和R2成为增益设置精度的唯一决定因素。BKZednc

如果需要高于8位(1/256)的分辨率,可以在拓扑中采用10位AD5292这样的器件,得到4倍的高增益设置精度。谨记,增益公式中出现255时,要替换为1023!或者采用如下更通用的方程式,其中N代表位数:BKZednc

DI3-E7-201907.pngBKZednc

(原文刊登于ASPENCORE旗下EDN英文网站,参考链接:Digital potentiometer simulates log taper to accurately set gain。)BKZednc

本文为《电子技术设计》2019年7月刊杂志文章。BKZednc

本文为电子技术设计原创文章,未经授权禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
Stephen Woodward
W .Stephen Woodward是仪表、传感器和计量学自由顾问,是EDN设计实例栏目最高产且最富创意的作者之一。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 一种用于电路板回收的新基材:遇水能溶 英国的Jiva Materials公司开发了一种新型的PCB基材Soluboard,这种基材是由天然纤维包裹在一种无卤的聚合物中制成的,与行业内经常使用的FR-4基材不同,这种材料只要在90摄氏度左右的热水中浸泡30分钟,就可以分层溶解···
  • 机器人版的ChatGPT,谷歌新模型泛化能力大幅提高 7月28日,Google DeepMind宣布以训练AI聊天机器人的方式训练了一款全新的机器人模型Robotic Transformer 2(RT-2),这是一种新颖的视觉-语言-动作(VLA)模型,可以从网络和机器人数据中学习,并将这些知识转化为机器人控制的通用指令。
  • 英伟达惨遭背刺,这个SDK让AMD平台也能运行CUDA 近日,AMD正式推出了HIP SDK,这是ROCm生态系统的一部分,基于开源ROCm解决方案,HIP SDK使消费者可以在各类GPU上运行CUDA应用,为专业和消费级GPU提供CUDA支持。
  • 头部跟踪功能如何提升您的空间音频体验 音频已成为我们使用媒体时沉浸感和逼真度的重要组成部分。当前的技术正在加强各种体验本身的沉浸式体验,让它们更加栩栩如生,但如果没有头部跟踪,由于大脑无法解决这种关键的含糊不清问题,这种沉浸感可能会被破坏。
  • 如何用软件定义无线电实现更有效的核磁共振成像仪设计 在本文中,我们讨论了MRI的基本概念,以及如何将SDR集成到这些系统中以提高性能和功能。我们介绍了一些适用于MRI应用的SDR规范,以及对MIMO射频通道的支持。还讨论了让SDR成为高性能射频单元的原因,以及高信噪比和MIMO通道之间的高相位相干性。
  • 电池能用三十年?美国Ener Venue称推出革命性电池技术 三元锂离子电池的理论寿命约为800次循环,磷酸铁锂约为2000次,而钛酸锂据说可以达到1万次循环,也就是说常规普通人使用的锂离子电池每天完全充放电三次,最多也就能用上几年的时间。虽然相较于铅酸电池200-300次的循环寿命来说,这已经是很大幅度的提升了,但现在有一家公司宣称他们的电池可以充放电30000次,每天充放电三次,能用30年。
  • 测试中比友商温度低14度,一加天工散热系统怎么做到的? 7月27日,一加在2023年ChinaJoy上发布了全球首创的散热技术,即航天级三维立体散热系统“天工散热系统”,这是一加的又一次新的尝试,让我们一起来了解一下。
  • 万物电气化:探索绿色未来之路 在本文中,我们将重点介绍美国年度脱碳展望(ADP)2022报告中的一些重要发现。本报告着眼于实现净零经济的各种情景。我们在本文中重点关注的方法称为“中心情景”,它遵循到2050年实现净零排放的时间表。
  • 闪存控制器在医疗安全中的作用简述 与大多数其他领域不同,对医疗设备的攻击可能危及人们的健康甚至生命,特别是当有大量医疗设备联网以便对患者实现更好的监控和管理时。这包括药物输液泵、心脏起搏器,以及监测心率、血压和其他生命体征的设备。
  • 后来居上,美光宣布已出样业界首款HBM3 Gen2内存 7月26日,美光宣布推出业界首款8层24GB HBM3 Gen2内存芯片,是HBM3的下一代产品,采用1β工艺节点,目前该款美光内存芯片正在向客户提供样品。
  • 韩国造世界首个室温超导体,闹剧还是新的未来? 7月22日,韩国的一个科研团队在预印本网站arXiv平台上上传了两篇论文,声称发现了世界上首个常压室温超导体,这种材料是一种改性铅磷灰石名为LK-99,超导临界温度在127摄氏度,即400K以上,而且在常压下就具备超导性。
  • 基于软件的无线输电建模方法 本文探讨了无线输电(WPT)在电动汽车(EV)充电、手机充电以及医疗设备等应用中的作用。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了