广告

数字电位器仿真对数抽头以准确设置增益

2019-07-18 09:16:40 Stephen Woodward 阅读:
数字电位器(dpot)是一种常见的器件,采用各种封装、电阻和分辨率。若使用带对数抽头的高分辨率数字电位器,就很容易安排增益控制电路,在整个调整范围内提供恒定的分辨率(增量单位:dB)。遗憾的是,目前并没有具备出色分辨率(例如步进小于6dB)的对数数字电位器。

数字电位器(dpot)是一种常见的器件,采用各种封装、电阻和分辨率。但是,除了电阻和设置之间的常规线性函数,它并无其他效用。对于需要宽动态增益调整范围(例如数十倍频程)的应用来说,这会造成一些问题。Dnpednc

以一款放大器为例,你使用8位(1/256)分辨率电位器,将其增益设置为0至10000(80dB)。当电位器设置与电阻(线性锥度)成线性关系时,数字电位器设置与增益也成线性关系。在256个电位器设置中,每个步进都表示约40的增益幅度增加(即增益步进为0、40、80、120、160等)。Dnpednc

对于8或以上的数字电位器设置(增益>300),这给增益设置提供了不错的分辨率,可以实现每个步进1dB或更低的增益控制。但是,当设置值低于8时,增益分辨率大幅降低。例如,如果需要将增益设置为100或以下,就没有办法让所需的值具有有效的精度,因此只能选择80或120左右的值。Dnpednc

若使用一个带对数抽头的准确、稳定、高分辨率数字电位器(电阻对数与设置成正比),就很容易安排增益控制电路,在整个调整范围内提供恒定的分辨率(增量单位:dB)。遗憾的是,目前并没有具备出色分辨率(例如步进小于6dB)的对数数字电位器。Dnpednc

但并非全无用处。图1所示的设计实例就采用了一个普通的线性抽头电位器(例如,ADI提供的价格便宜的双极AD5200),实现了近似的对数增益控制。Dnpednc

DI3-F1-201907.jpgDnpednc
图1:线性数字电位器仿真对数抽头。Dnpednc

如果Dx表示游标设置(0~255),我们可以采用分段求解的方式,轻松得出放大器增益Vout/Vin与Dx的设计公式。Dnpednc

首先,求解作为Vin函数的游标电压(Vw):Dnpednc

DI3-E1-201907.pngDnpednc

接下来,求解作为Vw函数的Vout:Dnpednc

DI3-E2-201907.pngDnpednc

然后,将公式1和2结合在一起:Dnpednc

DI3-E3-201907.pngDnpednc

毫无疑问:Dnpednc

DI3-E4-201907.pngDnpednc

Dnpednc

DI3-E5-201907.pngDnpednc

由此得到:Dnpednc

DI3-E6-201907.pngDnpednc

DI3-F2-201907.jpgDnpednc
图2:dB增益(左侧y轴)和增益设置分辨率(右侧y轴)与Dx(x轴)之间的关系。Dnpednc

认真看看得出的增益公式,可以看到这些有意思的地方:Dnpednc

1.Dx/(255-Dx)的近似对数性质。如图2所示,当R2/R1=100、Dx=8时,得出的增益=~10dB;Dx=23时,增益为20dB;Dx=128时,增益为40dB;Dx=232时,增益为60dB;Dx=247时,增益为70dB。在整个60dB=1,000~1的范围内,增益设置的分辨率仍然不超过1dB,这一点尤其重要。此外,Dx=0时,增益设置为0,同时Dx=255选择开环。Dnpednc
2. 采用电位器游标作为输入端子的策略有效地将游标触点移动到放大器A1的反馈回路中(图1),从而避免了成为误差项,改善了增益设置的时间和温度稳定性。Dnpednc
3. 同时,在A1反馈和A2输入(图1)端使用RAB电阻元件可以将RAB公差和温度系数(tempco)(AD5200中分别为±30%和500ppm/℃)与灵敏度进行比较,使R1和R2成为增益设置精度的唯一决定因素。Dnpednc

如果需要高于8位(1/256)的分辨率,可以在拓扑中采用10位AD5292这样的器件,得到4倍的高增益设置精度。谨记,增益公式中出现255时,要替换为1023!或者采用如下更通用的方程式,其中N代表位数:Dnpednc

DI3-E7-201907.pngDnpednc

(原文刊登于ASPENCORE旗下EDN英文网站,参考链接:Digital potentiometer simulates log taper to accurately set gain。)Dnpednc

本文为《电子技术设计》2019年7月刊杂志文章。Dnpednc

本文为电子技术设计原创文章,未经授权禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
Stephen Woodward
W .Stephen Woodward是仪表、传感器和计量学自由顾问,是EDN设计实例栏目最高产且最富创意的作者之一。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 波兰网友拆德国产电源插排,内部竟是中国制造?! 本文将会介绍LogiLink LPS262U电源插排(接线板)——包含三个USB端口和两个Schuko插座——的内部结构及其简短测试。
  • 仿真器智能,工程师更聪明! 不要过度依赖SPICE仿真器的自动设定,因为过度相信自动化有时可能引发错误。请记得:仿真器智能,工程师更聪明!
  • 可解决工业自动化和IIoT挑战的MCU 工业自动化和工业物联网(IIoT)设计人员的性能要求不断变化。就MCU而言,他们希望获得更快的处理速度、更多的内存、更好的连接性和更多的安全功能。
  • 儿童电子学(二):电容器 电容器是最重要的电气元件之一,我们将在儿童基础电子课程的第二部分了解它的工作原理我们将从储能功能方面对其进行探索,所进行的测试和实验将侧重于这一要素。
  • 碳化硅电力电子应用不止于汽车 第三代宽禁带半导体——碳化硅(SiC)——正在发挥其众所周知的潜力,在过去五年内,汽车行业一直是该材料的公开试验场。然而,电气化议程不会以汽车开始和结束。更广泛的运输应用将很快出现,包括卡车和公共汽车、船舶和航运、火车的进一步电气化,甚至飞机。在供电方面,并网太阳能发电系统和通过高压直流链路传输能源,对于低碳能源的生产和分配也至关重要。
  • 波兰网友测试拆解中国产手电筒/手提灯,会不会发起客诉? 本文将对中国制造的COB LED HP1807带移动电源的手提灯/手电筒的内部(包括电池容量)进行简短的测试和分析。在本主题中,我还将展示其电路板上连接的详细草图,这实际上也构成了其原理图。
  • 增强型GaN HEMT的漏极电流特性 增强型GaN基高电子迁移率晶体管(HEMT)已经采用两种不同的结构开发出来。这两种增强型结构是金属-绝缘层-半导体(MIS)结构和栅极注入晶体管(GIT)结构。MIS结构具有受电压驱动的小栅极漏电流,而GIT则具有脊形结构和高阈值电压。两者也都有一些缺点。MIS对栅极干扰的可靠性较低,阈值电压较低,而GIT的栅极开关速度较慢,栅极漏电流较大。
  • 利用反极性MOSFET帮助555振荡器忽略电源和温度变化 恒定频率振荡器是555定时器的经典应用之一。然而,由于所用二极管的特性不理想,占空比的间隔会随着温度和V+电源的变化而变化。本设计实例给出了一种解决方法:利用反极性P沟道MOSFET引导电容的充电电流而不产生任何明显压降。
  • 儿童电子学(一):LED 电子是当今的热门话题,许多孩子们也期望了解并掌握这个重要技术的基本原理。本文是一个面向孩子们的基础电子课程,将并以简单有趣的方式教他们基础知识,激发他们的兴趣。
  • 让智能手表摆脱手机束缚 智能手表迄今为止仍被普遍视为智能手机配件。尽管智能手表时尚酷炫,但是当您必须随身携带手机时,它的存在就会略显多余。而且,并不是任意一款手机都能与智能手表相兼容。
  • 给电子设计初学者的一些实用技巧 本文将为初学者提供一些实用的布局、提示和技巧,可以帮助您避免事故或解决各种问题。该系列将不定期发布。
  • 经典电子小制作项目:DS18B20制作的测温系统原程序原理 下面介绍的这款DS18B20制作的测温系统,测量的温度精度达到0.1度,测量的温度的范围在-20度到+50度之间,用4位数码管显示出来。DS18B20的外型与常用的三极管一模一样,用导线将JK—DS的DA端连到P3.1上。连接好DS18B20注意极性不要弄反,否则可能烧坏。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了