向右滑动:上一篇 向左滑动:下一篇 我知道了
广告

“驯服”振荡—电容性负载问题

时间:2019-08-23 作者:Bruce Trump 资深模拟工程师 阅读:
鉴于反馈通路中相移(或者称作延迟)引起的诸多问题,我们一直在追求运算放大器的稳定性。通过上周的讨论我们知道,电容性负载稳定性是一个棘手的问题。

鉴于反馈通路中相移(或者称作延迟)引起的诸多问题,我们一直在追求运算放大器的稳定性。通过上周的讨论我们知道,电容性负载稳定性是一个棘手的问题。如果您才刚刚接触我们的讨论,那么您应该首先阅读前两篇博客文章《振荡原因》和《“驯服”振荡》。cXWednc

“麻烦制造者”运算放大器开环输出电阻 (Ro),实际并非运算放大器内部的一个电阻器。它是一个依赖于运算放大器内部电路的等效电阻。如果不改变运算放大器,也就不可能改变这种电阻。CL 为负载电容。如果您想驱动某个 CL,您就会受困于 Ro和 CL 形成的极点频率。G=1 时 20MHz 运算放大器的反馈环路内部 1.8MHz 极点频率便会带来问题。请查看图 1。cXWednc

021ednc20190822cXWednc

对于这个问题,有一种常见解决方案—调慢放大器响应速度。想想看,环路具有固定的延迟,其来自 Ro 和 CL。为了适应这种延迟,放大器必须更慢地响应,这样它才不至于超过去,错过希望获得的终值。cXWednc

减速的一种好办法是,将运算放大器放置在更高的增益中。高增益降低了闭环放大器的带宽。图 2 显示了驱动相同 1nF 负载但增益为 10 的 OPA320,其小步进值的响应性能得到极大提高,但仍然很小。将增益增加到 25 甚至更大,似乎相当好。cXWednc

022ednc20190822cXWednc

但是另一个问题出现了。图 3 增益仍为 10,但增加了 Cc,其将速度又降低了 1位。Cc 过小时,响应看起来更像图 2。Cc 过大时,可能出现问题,其看起来更像图 1。cXWednc

023ednc20190822cXWednc

恰到好处地补偿,可解决“靠近速率”问题——波特图分析。这已经超出一篇博客文章所能讨论的范围了,因此我只能试着给您一些建议。在解决这些问题时,可以借助于您的直觉,但是如果您提高补偿操作的能力水平,那么就需要向波特先生(波特图)请教了。cXWednc

查看更多请点击:《看一个TI老工程师如何驯服精密放大器cXWednc

 cXWednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • 当心回路增益 本文利用一个总反馈为单位增益电压跟随器的运算放大器简化模型,对回路增益展开深入讨论。
  • 利用Σ-Δ调制提高可编程中断控制器模拟输出的分辨率 在MCU中重建模拟信号有PWM和DAC两种方案。这两种方案都需要使用特定外设,但是在很多情况下它们都无法获得。一种解决方案是将8位MCU与4位固定参考电压模块结合使用,然后采用Σ-Δ调制生成模拟信号。
  • 从3个公式看输入电容对运算放大器的危害 在设计运算放大器时,是不可能不含输入电容的,而运算放大器的印刷电路板上就包含更多了。除了反馈电容器C<sub>F</sub>,其他所有电容都是杂散电容,它们会影响电路的稳定性。
  • 独石电容、瓷片电容、陶瓷电容什么关系? 独石电容和瓷片电容都属于陶瓷电容,整体构造上看独石电容和瓷片电容的区别是:独石电容是多层陶瓷电容的别称,独石电容是由多层介质和多对电极构成的,而瓷片电容一般是由一层介质和一对电极构成的,瓷片电容分为高频瓷介和低频瓷介两种。
  • 高性能数字ANC主动降噪方案 虽然我们使用的耳机产品越来越高档,但在室外使用普通耳机耳塞只能通过提高音量来盖过噪声,这样就不可避免地对我们的听力造成一定的损伤。针对这个问题,使用降噪耳机是比较好的选择……
  • 提高极低压差稳压器输出电流,实现均匀散热的并联设计 本文说明如何将3 A LT3033极低压差稳压器(VLDO)并联产生3 A以上电流并改善散热情况。利用LT3033的内置输出电流监测功能可以简化并联电路的设计,实现均流。
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告