广告

光谱传感器改善谷仓中谷物品质监测

2019-09-03 赵智慧,艾迈斯半导体 阅读:
光谱传感器改善谷仓中谷物品质监测
传统的谷物监测通常是从每个谷仓中抽取一定数量的样品,拿回实验室,通过光谱分析仪器进行分析,这样无法实现多个监测点自动上报数据实时分析。最新的光谱传感器可以通过NB-IOT、LoRa等无线技术,实现无人工、多点、实时的监测,并能根据当前的测试数据预估粮食质量的变化趋势。

近红外光谱仪器已经成为谷物质量监控领域种不可或缺的重要分析手段之一。谷仓监测的当的方法,通常从每个谷仓中抽取一定数量的样品,拿回到实验室,通过光谱分析仪器做分析,无法做到多个监测点自动上报数据实时分析。74Sednc

目前,绝大多数的光谱传感器都是工业级的,价格昂贵,只适用于大型的仪器中,无法做成低成本的消费类级别的微型光谱设备。74Sednc

随着传感器芯片(半导体)技术的不断发展和市场的需求,艾迈斯半导体推出了小尺寸,低成本,且面向消费类的光谱传感器,可以在谷仓中搭建多个监测点,并实时的监测谷物品质。作为消费产品传感器芯片制造商,艾迈斯半导体对谷物品质监测的未来有着独特的认识。74Sednc

本文介绍了艾迈斯半导体如何在未来的谷物品质监测中部署传感器。74Sednc

多通道的红外光谱传感器

太阳光中包含了紫外光、可见光、红外光以及微波。每种物质被光辐照后,会反射回带有其特定且唯一的光谱特征信息,而大部分的有机分子的特征吸收谱带,主要集中在红外区域。艾迈斯半导体在原有的光学技术基础上,开发了两款消费类级别的红外光谱传感器AS7420和AS7520,分别覆盖了750~1050nm波段和1350~2150nm波段,可以用于物质的定性分析。74Sednc

AMS-F1-20190903.png74Sednc
图1:全光谱图。(图片来源:艾迈斯半导体)74Sednc

艾迈斯半导体提供了一个完全集成的光谱模块,由一个近红外光源和一个探测器组成,可对待测物质做定性测量。首先要保证该物质的红外特征光谱是在近红外光源的波长范围内,光源打到待测物质表面,会有一个反射回来的红外光,带有该物质的吸收特性的光谱信息,并被光谱传感器的探测器接收,经过处理器或是云端服务器做数据分析处理,与存放在数据库的被测物质成分的参考光谱做匹配,从而得到具体的物质成分信息。74Sednc

AMS-F2-20190903.png74Sednc
图2:光谱模块测试流程。(图片来源:艾迈斯半导体)74Sednc

AS7024的探测器和光源包含在一个6.6x6x2.2mm³的模块中。探测器由64个硅光电二极管构成,带有带通滤波器。每一个光电二极管滤波器都在750nm到1050nm之间传输一定的波长,所有通道在这个波长范围内均匀分布,峰与峰相隔5nm,FWHM是10nm。74Sednc

AS7520是一个基于单像素InGaAs的探测器,且带通滤波器可调。有三组波段供选择,1350-1650nm、1550~1850nm、1750~2150nm。带通滤波器可以以1nm为步长进行扫描,FWHM为8nm.74Sednc

AMS-F3-20190903.png74Sednc
图3:AS7420的光谱响应曲线。(图片来源:艾迈斯半导体)74Sednc

为了提高红外光谱传感器的测量精度,传感器和相应的终端设备需要正确校准。艾迈斯半导体会在芯片出厂前做基本的初始校准,以消除制造公差。此外,传感器配备了补偿模型,可以用于补偿环境条件的变化。74Sednc

将光谱传感器集成到终端设备中后,有必要进行第二次校准,每个产品的结构,光路等因素会影响产品的测量精度。通过艾迈斯半导体提供的软件,将校准结果与初始的校准结果合并。74Sednc

在较低的近红外波长区域,吸收光谱比较宽,这使得区分不同物质特征非常困难。因此,需要额外的数据算法处理来更好的解决物质间光谱特征的微小变化。如图4测试的大米,小米的光谱特征曲线相似,但是经过一阶导数或是二阶导的算法处理,得到曲线上的变化斜率,从而区分出了相似的原始光谱曲线,准确的分辨出具体的物质。74Sednc

AMS-F4-20190903.png74Sednc
图4:大米和小米的光谱响应曲线以及经过二阶导数处理后的曲线。(图片来源:艾迈斯半导体)74Sednc

谷物品质的监控参数

粮食品质检测的相关参数主要有:74Sednc

1. 霉变程度:轻度霉变,中度霉变和重度霉变,霉菌的响应光谱一般在1000nm~2000nm。74Sednc
2. 蛋白质含量:蛋白质的响应光谱一般在1200nm~1700nm之间。74Sednc
3. 脂肪酸含量:脂肪酸的光谱吸收峰大概在2000nm左右74Sednc
4. 淀粉含量:淀粉的光谱吸收峰大概在1400~1500nm左右74Sednc
5. 水分含量:水的光谱吸收最大峰在940nm左右。74Sednc

以上的物质的特征光谱都是在红外波段比较明显,且基本是在2000nm以内,完全可以用艾迈斯半导体的红外光谱传感器进行检测,且使无人工,低成本,实时的多点监测成为可能。74Sednc

谷仓的温度监控

除上述的主要物质参数外,谷仓的温度也需要被监测,因为温度是影响谷物霉变的因素之一,可以搭配艾迈斯半导体的高精度温度传感器AS62XX,最高精度可以到+/-0.2°,休眠功耗只有0.1uA,测量功耗6uA,且无需校准即可准确测量温度,支持的工作温度-40°~125°,支持多个I2C地址,大小只有1.5x1mm,还可以设置温度门限值,超过门限值就会发出警告信号。74Sednc

AMS-T1-20190903.png74Sednc
表1:高精度温度传感器的型号比较。74Sednc

总结

艾迈斯半导体对光谱传感技术的不断创新,最新研发的面向消费类的近红外光谱传感器AS7520和AS7420可以覆盖750nm~1050nm和1350~2150nm的红外波段,可以检测大部分的有机化合物,搭配高精度的温度传感器AS62XX,可以监测粮仓中谷物质量,通过如NB-IOT、LoRa等无线技术,可以实现无人工,多点,且实时的监测,并能根据当前的测试数据预估粮食质量的变化趋势。74Sednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 剖析七种面向物联网的定位技术 在全球定位技术方面,GPS应用已非常成熟和广泛,但有一个遗憾是,它不支持室内定位。万物互联大背景下的定位要求是广连接、大范围、高并发和高精度,这就衍生了对定位技术的新需求。
  • 中兴全球首款屏下摄像头手机,采用的技术是什么? 据悉,中兴通讯即将推出全球首款屏下摄像头5G智能手机——中兴A20 5G。在这之前,小米、华为、Vivo等多家厂商都曾扬言推出屏下摄像头手机,如今真正官宣的却是中兴。同时,在奔向全面屏的征途里,随着导航键、听筒、传感器、指纹识别模组等都被成功隐藏在了边框或屏幕底,唯独前置摄像头成为全面屏征途的最后一块终极障碍。那么,实现屏下摄像头的技术挑战是什么?中兴通讯采用的技术又如何?
  • 深度相机三维信息成智能识别算法应用的关键 去年有新闻讲,小学生发现丰巢刷脸取件bug,用照片就能刷开快递柜!官方紧急下线。2D成像的缺陷是,相机成像的过程是3D到2D的投影,会丢失场景的三维信息。三维信息的缺失,限制了智能算法的应用。
  • 热敏电阻 – 近观 对多数应用设备来说都有对温度监控与控制的基本要求,而这一应用在全球有高达 60 亿美元的全球市场,并以每年5%的速度增长。然而,尽管它们在这些设备中发挥着至关重要的作用,许多工程师却都认为使用这类微小的装置是理所当然的,并且往往会产生误解。为了帮助解决这一问题,本文描述了主要类型的温度传感器,并且重点关注了负温度系数 (NTC) 热敏电阻,因为该装置在温度传感应用中的使用最普遍。
  • 楼宇烟雾探测技术:关于各种规范和认证 本文总结介绍了一些烟雾探测技术、其定义、烟雾探测器测试,以及它们与5项国际标准的关系。文中并没有将一个标准与另一个进行详细对比分析。而是使用一些示例,说明满足烟雾探测法规要求的过程有多严格和复杂。
  • 面向智能交通基础设施的模块化边缘计算技术 专为边缘应用打造的系统要求具备高度灵活性。这需要可扩展的处理能力,而采用嵌入式计算机模块是最为高效的实现方式。从智慧城市LoRa网关到智能充电基础设施和视频监控服务器,三种实际应用均搭配可选AI技术,以展现这种模块化设置的优势。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了