广告

谷歌又声称已达到“量子霸权” ,IBM不服跳出来打脸

2019-10-24 网络整理 阅读:
谷歌又声称已达到“量子霸权” ,IBM不服跳出来打脸
Google在科学杂志《自然》上发表的一篇新文章中正式宣布已实现“量子霸权”,但一个月前,谷歌曾秒删该论文。如今只过了一个月,论文便登上了Nature,是否真的代表谷歌实现了量子霸权呢?我们来看看具体论文内容是什么?

Google在科学杂志《自然》上发表的一篇新文章中正式宣布已实现“量子霸权”,但一个月前,谷歌的论文草稿,“意外”在NASA官网发布,结果非常震撼,称200秒的量子计算实现了最强超算1万年的结果。VBgednc

但不料论文匆匆下架,反而引起更大关注。VBgednc

EDN也对该事件进行了详细报道:《谷歌声称已达到“量子霸权” ,但论文为何被“秒删”?VBgednc

如今只过了一个月,论文便登上了Nature,是否真的代表谷歌实现了量子霸权呢?我们来看看具体论文内容是什么?VBgednc

论文详解

谷歌在论文摘要中说:VBgednc

“我们使用具有53个超导量子比特的可编程处理器,占用状态空间为253≈1016。重复实验的测量结果会采样相应的概率分布。”VBgednc

经典计算机中的比特只能处于0或者1两种状态,而薛定谔猫告诉我们,猫可以处于死和活两种状态的叠加,量子比特也一样,能同时处于0和1两种状态。VBgednc

1个量子比特只能表示2个状态,2个量子比特就能表示4个状态,3个量子比特就能表示8个状态,以此类推。VBgednc

由于量子力学中物体的状态正是在这种叠加状态空间中演化,再加上不同量子比特之间的耦合,就可以模拟出更多的状态。VBgednc

因此只需53个量子比特就可以模拟1016种状态,而这个数字已经超出了当今超级计算机的运算能力。VBgednc

说完了量子计算机的基本概念,下面我们看一下谷歌量子计算机的硬件。VBgednc

谷歌把这个实现量子优越性的量子处理器叫做“Sycamore”。它由54个transmon量子比特的二维阵列组成,每个比特与周围的4个比特相耦合。VBgednc

006ednc20191024VBgednc

上图展示了Sycamore处理器的布局,包含54个量子位的阵列(以灰色×表示),每个矩形都通过耦合器(以蓝色方块表示)连接到其四个最近的近邻。VBgednc

整个处理器的外观和普通的CPU芯片非常相似。VBgednc

该处理器使用铝制造,实现了低温超导中的约瑟夫森结,并使用铟制造两个硅晶片之间的凸点。芯片被引线连接到到超导电路板上,并在稀释制冷装置中被冷却至20mK以下。VBgednc

这一温度只比绝对零度高百分之二度,之所以要如此冷,是为了将将环境热能降低到大大低于量子势能,防止外界热量对量子处理器的干扰。VBgednc

处理器通过滤波器和衰减器连接到室温电子设备,后者可合成控制信号。所有量子位的状态可以通过同时利用频率复用的技术来读取。VBgednc

为了完全控制这个量子处理器,谷歌还精心设计了277个数模转换器。VBgednc

那么谷歌,用量子力学原理,和这样一个超级复杂的量子硬件解决了什么问题呢?VBgednc

恰恰是一个经典计算所不善于解决的量子电路采样问题,在这个问题上,经典计算机的运算能力显得捉襟见肘了。VBgednc

量子计算机上每次运行随机量子电路都会产生一个位串,例如0000101。由于量子干涉,就像激光在通过狭缝后形成的散斑一样,进行重复多次实验时(采样),某些位串比其他位串更容易出现。VBgednc

然而,随着量子比特的数量n(宽度)和门循环数量m(深度)的增加,用经典计算机为随机量子电路找到最可能的位串变得越来越困难。VBgednc

在实验中,谷歌首先运行12到53量子比特的随机简化电路,保持电路深度恒定。VBgednc

验证系统正常运行后,谷歌运行了53量子比特且深度不断增加的随机硬电路,当深度m增加到20时,经典仿真变得完全不可用。VBgednc

007ednc20191024VBgednc

图注:根据 薛定谔-费曼算法绘制的量子优越性电路实验结果示意图,图中自变量为量子比特数目和运行循环数量。图中的红色星是用经典计算验证对应的实验电路所需的时间。VBgednc

在量子处理器上获得一百万个样本需要200秒,而在一百万个内核上进行相等保真度经典采样将花费1万年,而对保真度的验证将花费数百万年。VBgednc

008ednc20191024VBgednc

谷歌在论文中只是展示了量子计算机的一种应用,未来可以用它来解决包括量子物理学和量子化学模拟在内的问题。VBgednc

量子计算的突破,还能促成机器学习的新应用,加速解决世界正在面临的一些最紧迫而复杂的问题。比如气候变化的模拟,比如探究哪一些分子能够制造更有效的药物。VBgednc

IBM 跳出来打脸

009ednc20191024VBgednc

自 2011 年 John Preskill 教授在一次演讲中提出「量子霸权」的概念,IBM、Google、Intel、微软,以及一些创业公司就开始加大对量子计算的投资和研发;该领域的竞争也越来越激烈。VBgednc

虽然,IBM 本次拆台 Google 看起来似乎是一个充满挑衅的举动,但 IBM 顶级量子研究人员兼量子计算总裁(也是本次论文的合著者之一)Jay Gambetta 表示,他们的动机主要是基于技术问题;更重要的是对「量子霸权」这种说法的不满,而不是存心与 Google 对抗。VBgednc

就连 John Preskill 教授自己最近也开始反思「量子霸权」一词的不妥之处。他在《量子》杂志上发表了一篇文章,并总结了公众对于这个词的两个主要反对意见:VBgednc

第一,「量子霸权」这个术语使得科技公司和媒体对量子技术的报道更加肆无忌惮VBgednc

第二,「量子霸权」容易使人联想到“白人至上”(按:量子霸权的英文为 quantum supremacy,“supremacy”一词还有“至上”的意思),这会引发人们的反感VBgednc

IBM 在其官方博客中表示,上述两个反对意见都是合理的;此外,它还补充了一个观点,即“霸权”和“实现量子霸权”等字眼会误导公众。首先,正如上文所提到的,真正的量子霸权尚未实现;其次,每种计算机都具有其独特的优势,因此,量子计算机也不会凌驾于传统计算机之上。VBgednc

此外,IBM 还呼吁行业对诸如「量子计算机首次超越传统计算机,实现 XXX」之类的说法存疑,因为建立合适的衡量基准是极其复杂的。VBgednc

(综合整理自量子位、ifanr、雷锋网;责编:Demi Xia)VBgednc

 VBgednc

 VBgednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 使用带有片上高速网络的FPGA的八大好处 尽管在FPGA中的按位来布线非常灵活,但其缺点是每个段都会给任何给定的信号通路增加延迟。需要在FPGA中进行长距离传输的信号会导致分段之间的连接延迟,从而降低了功能的性能。按位布线的另一个挑战是拥塞,它要求信号路径绕过拥塞,这会导致更多的延迟,并造成性能的进一步降低。
  • 从奥迪A8的内部设计中,我们可学到哪些? 当奥迪在2017年底推出其重新设计的A8轿车时,该公司吹捧它是汽车行业的首款3级汽车。当时奥迪所面临的技术问题和陌生的成本结构,整个汽车行业现在都仍在面对。本文根据奥迪A8的拆解,对五个问题进行了深刻解读。
  • 拆解摩托罗拉Edge+:屏幕最易损坏 摩托罗拉今年4月发布了 Edge+,日前,YouTuber频道PBKreviews对摩托罗拉新旗舰Edge+进行了拆解,一起来了解一下其内部情况。
  • 可保持CMRR的可变增益超平衡电路设计 超平衡电路是一种差分放大器,可以为平衡线路的两个脚提供相同的输入阻抗。某些调音台中所使用的交换系统必须要使用平衡负载,从而确保信号平衡和共模抑制比(CMRR)始终得到保持。
  • 音频功率放大器的温度漂移补偿 本文介绍的技术可以补偿直接耦合AB类音频功率放大器输出中的DC电压漂移。直接耦合输出的主要好处是改善了低音响应。由于该设计省去了隔直电容器,因此其低频传输特性得到了显著改善。
  • 提高前端的增益 低噪声,低偏移电压,低漂移-当你把信号链前端的增益提高后,所有的这些精密小信号处理的目标变得很简单。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了