广告

模拟与混合信号电路会否占领未来AI SoC高地?

2019-11-11 痴笑 阅读:
随着摩尔定律的发展,过去30年的集成电路发展的最主要趋势是数字化。数字化设计是目前大型SoC的基本方法学,越来越多的模拟电路进入全数字时代,All Digital PLL, Digital LDO, Time-domain based ADC,Digital PA,数字化/二值化方法成为了克服模拟电路瓶颈的重要手段。然而“羞于见人”的模拟电路并非一无是处。

年关岁尾,一大波喜讯正在排队赶来。比如,中国大陆机构在ISSCC 2020的论文数量首次突破了两位数,更有清华/电子科大多位教授的课题组实现了一年2篇ISSCC的突破。值此金秋盛景,亚洲芯片设计领域的最高会议——亚洲固态电路会议(Asian Solid State Circuit Conference, A-SSCC)也在澳门举行。除了不少研究成果和论文的展示,今年的ASSCC有一个更引人关注的Panel Discussion Session —— 模拟与混合信号电路会不会是未来AI SoC的主战场?小编很早就想就这个话题写一篇,恰逢大佬们的“华山论剑”,就借花献佛,以飨读者。7fYednc

001ednc201911117fYednc

能效导向,模拟MAC称霸

可以说,随着摩尔定律的发展,过去30年的集成电路发展的最主要趋势是数字化。数字化设计是目前大型SoC的基本方法学,越来越多的模拟电路进入全数字时代,All Digital PLL, Digital LDO, Time-domain based ADC,Digital PA,数字化/二值化方法成为了克服模拟电路瓶颈的重要手段。7fYednc

然而“羞于见人”的模拟电路并非一无是处。在能效上,基于模拟乘加(Multiply and accumulation, MAC)运算的电路实现具有显著优势。来自韩国KAIST的Seung-Tak Ryu教授比较了美国斯坦福大学与比利时鲁汶大学就同一算法,同一精度(二进制)神经网络实现的两个不同设计,一个以模拟MAC为基本计算单元、一个以数字MAC为基本计算单元。可以发现,基于开关电容的模拟计算的能效优势在10倍以上。7fYednc

002ednc201911117fYednc

随着摩尔定律的发展进一步进入平台期,高校的工艺节点已经逐步停滞在28-65nm时,“模拟运算”的翻身仗似乎即将打响。其核心理论支撑是:数字电路的翻转电压幅度是整个Vdd,在1V数量级上,而模拟计算电路,特别是基于电压/电荷域计算,翻转电平可能只有10mV。而电路功耗是和翻转电压的平方律呈正比。7fYednc

更进一步地,随着新器件与新算法的提升,各式阻变存储器与神经元突触相仿的特性赋予基于新器件的模拟计算新的机会。来自台湾国立清华大学的鄭桂忠教授特别比较了基于阻变存储器的模拟实现、混合信号实现与纯数字实现的突触设计,如下图。刨除精度和稳定性的问题,模拟设计无论在复杂度还是在功耗上都具有更明显的优势。(据小道消息指出,该领域已经成为了高性能计算的一大热点,ISSCC 2020 清华大学就有篇基于ReRAM的存算一体芯片。)7fYednc

003ednc201911117fYednc

MAC不是AI的全部,模拟是么?

虽然模拟MAC的高能效令许多设计者怦然心动,但是其挑战也非常显著。最主要的问题来自于AI SoC的的可编程性。清华大学尹首一教授总结了目前AI SoC的可编程需求,虽然MAC占据了主要的算力,但是仍有其他运算。7fYednc

004ednc201911117fYednc

与此同时,高性能AI SoC在可变精度的计算(bit-width)以及可重构的数据流(dataflow)上都有显著需求,而这些需求是目前的模拟运算无法考量的重点。毕竟,无论在电压/时间域上,要复制一个模拟信号的代价要远远比数字来的大。D触发器(DFF)可以无损地复制任意数字信号,而模拟信号的复制却要和电路的线性度、热噪声、PVT差异做抗争,每一次抗争的代价都是功耗与面积。7fYednc

005ednc201911117fYednc

还不止这些,来自日本大阪大学的粟野皓光教授(Hiromitsu Awano)更是一针见血地指出了模拟计算在AI SoC产业化的过程中提到的问题,比如随着工艺变化的Scalability等。即使在能效领域,他也相信,随着摩尔定律的更进一步推动,先进工艺下的数字计算代价会越来越低,最终在SoC层面取得比模拟更高的优势。7fYednc

006ednc201911117fYednc

另外,粟野教授也是所有Panelist和全场大量模拟电路设计者中唯一明确不看好模拟电路与混合信号在AI SoC发展的大佬。勇气可嘉!7fYednc

模拟计算+领域专用+存算一体=?

这会不会是最终的胜利方程式呢?清华大学刘勇攀教授回顾了AI SoC处理器的发展流程,并指出现在已不再是入行通用AI SoC的时机。相形之下,应用专用/领域专用的AI SoC却有大把的机会。特别是在非易失性存储器上,通过模数混合的方法,结合AI计算与特殊器件的可计算特征无疑是一大趋势。7fYednc

007ednc201911117fYednc

无独有偶,尹首一教授也在Thinker系列芯片的发展过程中,总结了AI芯片的规律。第一阶段,是领域专用体系结构上的发展,这个过程中可重构的并行计算体系结构推进了芯片的能效提升,然后很快地,冯诺依曼瓶颈(处理器与存储器间的带宽上限,亦称为“存储墙”)成为了第一阶段的最终挑战;于是第二阶段是存内计算的时代,但是目前为止存算一体仅仅能支持基本的MAC操作,而对于AI SoC的其他操作并不支持。由此,AI SoC发展的第三阶段,可重构架构的并行计算架构与存算一体的交叉产物呢?7fYednc

008ednc201911117fYednc

重新定义模拟和数字的边界

作为一个专业的ADC/AI从业人员,小编一直认为AI SoC中的模拟计算给广大模拟爱好者带来了又一春。但是,在设计过程中不应该是单独将模拟计算分割出来看待,而是应该从SoC的角度反省模拟与数字的边界,或者是模拟到智能感知的转换过程。如果将目前模拟计算的MAC归纳为数字-模拟-数字的双重重转换过程,包含ADC/DAC整列,那么在智能传感器SoC中,前端的ADC加上多层模拟MAC,就变成了一个无数次模数和数模转换的怪物。7fYednc

显然这个方法有点累赘。2018年的ISSCC上,哥伦比亚大学的Mingoo教授课题组就重新定义了模数转换的位置,将部分计算采用模拟电路实现,通过全局考量最小化量化的代价与功耗,将模拟与数字的边界放到特征提取以后,实现单比特的量化编码。(又有一个小道消息,ISSCC 2020上东南大学在此基础上进一步改善此架构,功耗又减小了一半。)7fYednc

009ednc201911117fYednc

↑ 这页并不来自A-SSCC,而是痴笑君假装大佬的一页ppt7fYednc

综上所述,你觉得模拟计算/存算一体会不会成为AI SoC的一种选项呢?能不能啪啪啪打脸以下两位呢?7fYednc

010ednc201911117fYednc

(本文授权转载于微信公众号矽说,作者:痴笑)7fYednc

责编:Demi Xia7fYednc

  • 如果精度能满足要求,使用模拟乘加器显然会在能效和速度上大大快于数字乘加。
本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • “中国IC设计成就奖”提名产品简介:新能源汽车用功率器 比亚迪半导体BF1181是一款电隔离单通道栅级驱动芯片,可兼容并驱动1200V IGBT&SiC功率器件。其互补的输入信号满足5V的信号输入,可直接与微控制器相连。其输出驱动峰值电流高达±8A,满足4500Vus 60s脉冲绝缘要求,适应-40℃~125℃环境运行温度范围。BF1181同时具有优异的动态性能和工作稳定性,并集成了多种功能,如故障报警、源密勒钳位、去饱和保护、主次级欠压保护等,同时集成模拟电平检测功能,可用于实现温度或电压的检测,并提高芯片的通用性,进一步简化系统设计并确保系统更安全,可应用于EV/HEV电源模块、工业电机控制驱动、工业电源、太阳能逆变器等领域。
  • “中国IC设计成就奖”提名产品简介:超高耐压贴片SJ-MOS 维安面向全球市场,在800V及以上超高压产品进行了大量的技术投入,经过近多年的超高压SJ-MOSFET产品研发积累,已开发出国内非常领先的工艺技术,可以将小封装,高耐压导通电阻做到非常低水平。给客户提供高功率密度的800V及900V以上耐压产品。此举填补国内空白,打破了进口品牌垄断的局面。降低对国外产品依存度。维安1000V超结工艺产品技术利用电荷平衡原理实现高耐压的低导通电阻的特性。相比VD-MOSFET 结构工艺产品,SJ-MOSFET有更好的更小封装和成本优势。目前市场使用1000V耐压MOSFET,多以TO247, TO-3P甚至TO-268超大封装。维安1000V器件WMO05N100C2,使用TO-252/DPAK贴片封装,内阻低至3.5Ω,相比同规格VDMOSFET 6-7Ω 下降1倍。目前在工业控制,中低压配电等380VAC输入场景得到广泛应用。
  • 从技术角度分析,GaN和SiC功率器件上量还欠什么? 氮化镓(GaN)和碳化硅(SiC)这两种新器件正在推动电力电子行业发生重大变化,它们在汽车、数据中心、可再生能源、航空航天和电机驱动等多个行业取得了长足的进步。在由AspenCore集团举办的PowerUP Expo大会上,演讲嘉宾们深入探讨了包括GaN和SiC在内的宽禁带(WBG)器件的技术优势以及发展趋势。
  • 研发转至FAE(现场应用工程师),是否远离技术了?有前途吗? 前几日,EDN小编在浏览知乎的时候,发现了一个有趣的话题《FAE有什么发展前景吗?》,被浏览次数接近九万次。小编总结了一下题主的提问:FAE是否远离技术了?未来是否有发展前景?
  • Microchip模拟嵌入式SuperFlash技术助力存算一体创新 SuperFlash memBrain存储器解决方案使知存科技片上系统(SoC)能够满足最苛刻的神经处理成本、功耗和性能要求
  • 瑞萨电子推出64位RISC-V CPU内核RZ/Five通用MPU,开创R 产品作为瑞萨现有Arm CPU内核MPU阵容的新成员扩充RZ家族的产品组合
  • 用TinyML开始设计——开发评估套件 本文中展示的开发套件和评估板得到一些流行的机器学习库和用于 TinyML 工作流程资源的支持,包括用于微控制器的 Google TensorFlow Lite 和 Edge Impulse,因而它们能够成为您第一个项目的理想起点。
  • “中国IC设计成就奖”提名产品简介:功放芯片8002A优势 8002A是一款AB类,单声道带关断模式,桥式音频功率放大器。
  • “中国IC设计成就奖”提名产品简介:3.8V~40V输入,3.5A SCT243x系列产品:SCT2430,SCT2431,SCT2432,主要针对工业和车载应用中的三种不同需求组合(外置补偿可设置,缓启动时间可设置,频率可设置)所开发的系列产品。目前该系列产品累计出货量超千万片以上,目前客户端回诉的质量DPPM为0ppm。
  • “中国IC设计成就奖”提名产品简介:AC-DC电源管理芯片S SP2738CF是无锡硅动力微电子股份有限公司自主架构的一款性能优异的原边反馈AC/DC控制电路,采用了多项自研技术,已申请并通过了发明专利、实用新型专利技术包括国际PCT专利共9项。产品适用于高功率密度、小体积AC/DC 充电器与适配器,无需光耦和TL431。芯片可以工作在CCM/QR工作模式,可以在十分精简的外围条件下高精度地实现恒流和恒压控制,可以轻松实现6级能效要求。
  • “中国IC设计成就奖”提名产品简介:电量计芯片CW2217B CW2217B是一款用于系统侧的单节锂电池电量计芯片,其通过内部高精度模拟前端(AFE)采集电池的实时电压、电流和温度,结合内置电池模型,可精准计算的电池剩余电量(SOC)。芯片还能记录电池的充放电循环数(Cycle),追踪电池内阻的变化,计算电池的健康程度(SOH),可使用户更了解电池状态,最终提升用户体验。可广泛用于智能手机、平板电脑、智能POS机等移动便携终端,也可用于智能穿戴设备和使用锂电池的IoT设备。
  • “中国IC设计成就奖”提名产品简介:Type-C全接口综合保 传统上,需要采用多个OVP保护芯片与TVS等器件,为Type-C接口提供可靠的保护。维安采用”All-IN-One”的技术方案,在单芯片上实现了4个通道的短路与热插拔,和8个通道的系统级静电综合防护。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了