广告

采用“系列优先”的方法进行运算放大器设计

2019-12-30 Hayden Hast,系统工程师 阅读:
采用“系列优先”的方法进行运算放大器设计
随着如今生产周期不断缩短,您需要快速做出决定。选择了错误的运算放大器可能会耗费时间和金钱。

当我第一次光顾德克萨斯的一家烧烤店时,菜单上各式各样的肉让我感到非常惊讶,以至于我不知道要选哪一种。但幸运的是,烧烤店提供了三种肉的拼盘,因而我可以尝一下不同种类的肉。coFednc

其实,作为一个寻求运算放大器(op amp)的设计工程师,您也可以有很多选择。另外,随着如今生产周期不断缩短,您需要快速做出决定。选择了错误的运算放大器可能会耗费时间和金钱。coFednc

TI丰富的产品组合由48个独特的放大器组成(包括新的TLV9001、TLV9052、TLV9064),提供了16种不同的封装,其中包括业内最小的单通道和四通道封装。在此技术文章中,您将了解到此新的运算放大器系列如何满足各种项目需要,减少印刷电路板(PCB)的空间,并提供多种带宽选项,为您的信号链提供更多增益。coFednc

我们拥有丰富多元的产品组合可以帮助您选择准确的通道数量、速度以及确定您的系统需求。coFednc

通过出色产品性能,实现设计功能多元化

图1概述了全器件系列,顶部突出显示了相似之处。这三种子系列可以互换,因为它们使用的电源电压、输入和输出电压范围以及偏移电压均相同。此外,其相似的低电阻输出阻抗可最大限度地减少稳定性问题。coFednc

coFednc

1:放大器系列对比coFednc

然而,每个子系列都具有独特的性能优势。例如,如果您为了感测电机电流,最初在带输出摆幅至GND电路的单电源低压侧、单向电流传感解决方案中使用TLV9002,但后来,为了处理大型电机电流瞬变,确定需要更高的增益和更快的转换速率,那么您可以轻松切换到更高带宽、引脚对引脚兼容的TLV9052,无需再重新进行设计。这是可以实现的,因为每个子系列都有相同的16个封装选项,涵盖所有三种通道配置。coFednc

封装灵活性

图2详细列出了各种封装方案的详细信息。“行业标准”( Industry Standard)一列确定了封装是否可从其他供应商处获得,以作为第二次采购的选项。“关闭”(Shutdown)一列突出显示了具有关闭功能的封装。关闭功能有助于降低总能耗。coFednc

虽然大多数的小封装选项都是四方扁平无引线(QFN)封装,但我所强调的封装选项不属于上述类型。双通道、小外形晶体管(SOT)-23-薄封装采用单通道SOT-23封装体,但它有8个引脚,而不是传统的5或6个引脚。这对于那些更大的引线封装来说是一个非常好的选择,如小外形集成电路(SOIC)、薄小外形封装(TSSOP)或极薄小外形封装(VSSOP)。如要多源采购8引脚SOT-23和传统的引线封装,也可以采用双布局技术。如要了解更多详情,请阅读模拟设计期刊文章,“小封装放大器的二次采购选项”。但是,如果您想最大限度地减少PCB空间的话,我建议采用QFN封装选项。coFednc

coFednc

2:放大器系列封装选项coFednc

尺寸的突破

这三种放大器子系列采用业界最小的单通道和四通道封装。相比同类小尺寸器件,TI单通道的0.8mm x 0.8mm超小型无引线(X2SON)封装的尺寸要小13%,其2.0mm x 2.0mm超小型QFN(X2QFN)封装的尺寸还要小7%。这些封装加上双通道1.0mm x 1.5mm X2QFN封装,能提供多种选择来帮助您减少PCB面积。您可以在图3的右侧看到这3种封装。coFednc

coFednc

3:逐步实现更小的封装coFednc

由于间距较小的缘故,制造技术可能会限制采用超小型QFN封装,因此,TI还可以提供不同间距的多种小型封装选项。应用报告“使用TI的X2SON封装进行设计和制造”提供了这些封装的布局和走线指南。coFednc

总结

有人说选择太多会导致无从下手。但我认为,不管是在德克萨斯州决定吃什么烧烤,还是设计工程师选择放大器,选择当然是越多越好。当您下次开始设计时,可以选择如下运算放大器系列:有三款不同的性能水平可供选择;16个独特的封装选项之一;采用业界最小的单通道和四通道封装并可在您需要时节省PCB面积。coFednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • RMS所应了解的五件事 本文对下面五个与RMS相关的信息,着重强调了它们的实用价值:RMS是给定信号段的特定属性;滤波与求平均值不是一回事;RMS并非总是与功率有关;在采样系统中,RMS比均值更优;无法通过对连续的RMS结果滤波来提高精度。
  • 可保持CMRR的可变增益超平衡电路设计 超平衡电路是一种差分放大器,可以为平衡线路的两个脚提供相同的输入阻抗。某些调音台中所使用的交换系统必须要使用平衡负载,从而确保信号平衡和共模抑制比(CMRR)始终得到保持。
  • 音频功率放大器的温度漂移补偿 本文介绍的技术可以补偿直接耦合AB类音频功率放大器输出中的DC电压漂移。直接耦合输出的主要好处是改善了低音响应。由于该设计省去了隔直电容器,因此其低频传输特性得到了显著改善。
  • 建立时间 建立时间是运放阶跃响应进入和停留在最终值的特定误差范围内的所需时间。它在一些应用中十分重要,例如驱动AD转换器,数字化的快速变化输入。但我们先超越这个定义看一看,聚焦在建立波形的特性上。
  • 斩波型运放及其噪声 斩波型运放提供较低的失调电压,同时也极大地减少了1 / f(闪烁)噪声。它是怎么做到的?这篇短文就来讨论这个主题。
  • 经常被误解的运放压摆动作 运放的压摆动作经常被误解。压摆率是一个内容较多的话题,我们需要将它进行分类讨论。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了