广告

贴片电阻上丝印标注50B、10C是什么意思?

2020-02-21 13:44:11 阅读:
插件电阻往往用色环表示电阻阻值,贴片电阻上面的印字绝大部分标识其阻值大小。贴片电阻的阻值通常以数字形式直接标注在电阻的表面,所以读电阻的阻值直接看电阻表面的数字即可。一般会有四种表示方法……

插件电阻往往用色环表示电阻阻值,贴片电阻上面的印字绝大部分标识其阻值大小。贴片电阻的阻值通常以数字形式直接标注在电阻的表面,所以读电阻的阻值直接看电阻表面的数字即可。一般会有四种表示方法:gLKednc

(1)常规 3 位数字标注法gLKednc

由三个数字组成。前面两位是有效数字,第三位数表示科学计数法中10的幂指数,基本单位是Ω,即:XXY=XX*。例如103,1和0是有效数字直接写下来即可,3表示10 的几次幂,即10的3次方,如图所示。  所以103表示的阻值就是10×Ω=10×1000Ω=10000Ω=10kΩ。gLKednc

gLKednc

常规 3 位数字标注法表示电阻阻值gLKednc

常规 3 位数标注法表示电阻阻值多用于E-24 系列。精度为±5%(J),±2%(G),部分厂家也用于±1%(F)。举例如表:gLKednc

gLKednc

(2)常规 4 位字数标注法gLKednc

由四个数字组成,一般电阻的误差±1%。前面三位是有效数字,第四位表示科学计数法中10的幂指数。例如1502,150是有效数字, 2表示10的二次方,如图所示。基本单位是Ω,即:XXXY=XXX*,所以1502的阻值就是150×10的二次方=150×100=15000Ω=15KΩ。gLKednc

gLKednc

常规 4 位数字标注法表示电阻阻值gLKednc

常规 4 位数字标注法多用于E-24,E-96 系列,精度为±1%(F),±0.5%(D)。举例如表所示。gLKednc

gLKednc

(3)字母表示小数点位置gLKednc

R表示小数点位置的方法是由数字和字母组成,例如5R6、R16等。这里只需要把R换成小数点即可,如图14.3所示。例如:5R6=5.6Ω、R16=0.16Ω。gLKednc

gLKednc

R表示小数点位置的方法表示电阻阻值gLKednc

这里应该注意一下,"R"是表示电阻,“Ω”是表示电阻的单位——“欧姆”,在物理概念里面,我们不会也不能把两者混用。但是在工业生产中,由于使用希腊字母不是很方便,所以经常采用R代替“Ω”作为单位。gLKednc

gLKednc

字母M、k、R、m都可以用来表示小数点。单位为 mΩ时,m 表示小数点位置。m表示小数点位置的方法表示电阻阻值实例如表格所示。gLKednc

gLKednc

同样,如果单位是MΩ,kΩ,则M、k表示小数点位置。不过这种情况比较少,一般MΩ,kΩ数量级的电阻采用3位数字或者4位数字来表示。gLKednc

(4)3 位数乘数代码(Multiplier Code)标注法gLKednc

以上内容,有些读者应该在学校时已经学习和接触,而且也比较好理解。但是一些小封装的精密电阻由于空间太小,可能不印刷丝印,例如0201封装的电阻往往什么字都不印,如图所示各种封装电阻的丝印对比。gLKednc

gLKednc

各种封装电阻的丝印对比gLKednc

但是有些精密电阻印了丝印,但是并不符合我们前面描述的三个方法。而是两个数字加一个字母表示。例如50B、01C,如图14.5所示。这种又是什么方法呢?gLKednc

gLKednc

3 位数乘数代码(Multiplier Code)标注法表示电阻阻值gLKednc

这个方法就是用代码表示数字。丝印为两个数字加一个字母的电阻,一般是精密电阻,这种精密贴片电阻是对某一个优先数进行编码,然后通过代码找到其代表的数值,如01C就是10K。下面是代码,就像查字典一样。又例如:10欧的电阻用代码01X表示,仔细看下表你就会明白的。gLKednc

这种方法的格式是XXY,前两位 XX 指有效数的代码,转换为科学计算前面的数值;后一位Y指10的几次幂的代码,转换为科学计数法的10的几次幂。gLKednc

我们查找前两位数字所代表的数值大小,可以查找E-96 阻值代码表,如表所示。查找第三位字母表示的10的几次幂,可以查找E-96 乘数代码表,如表所示。gLKednc

gLKednc

三位乘数代码标注方法表示电阻阻值实例如表格14.7所示。51、18、02所代表的数值,通过查找表得到分别为:332、150、102;X、A、C的含义可以通过查找表格得到,分别为:10-1、100、102。gLKednc

gLKednc

(本文授权自公众号硬件十万个为什么;责编:Demi Xia)gLKednc

  • 终于清楚了,,希望以后能再多普及一下贴片三极管,场效应管和有颜色的电容,电感等器件的标识、辨识知识,谢谢!
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 让智能手表摆脱手机束缚 智能手表迄今为止仍被普遍视为智能手机配件。尽管智能手表时尚酷炫,但是当您必须随身携带手机时,它的存在就会略显多余。而且,并不是任意一款手机都能与智能手表相兼容。
  • 经典电子小制作项目:DS18B20制作的测温系统原程序原理 下面介绍的这款DS18B20制作的测温系统,测量的温度精度达到0.1度,测量的温度的范围在-20度到+50度之间,用4位数码管显示出来。DS18B20的外型与常用的三极管一模一样,用导线将JK—DS的DA端连到P3.1上。连接好DS18B20注意极性不要弄反,否则可能烧坏。
  • IC制造生命周期关键阶段之安全性入门 本文包括两部分,我们主要探讨芯片供应商和OEM之间的相互关系,以及他们为何必须携手合作以完成各个制造阶段的漏洞保护。第一部分指出了IC制造生命周期每个阶段中存在的威胁,并说明了如何解决这些威胁。第二部分着重说明了OEM所特有的安全风险,并指出了最终产品制造商和芯片供应商如何承担各自的责任。
  • 一种简单的PCB加温电路设计 加温电路的主要目的是为了在低温时,电路发挥作用为PCB板进行加热保温使其温度可以保持在器件可运行的最低温度以上,所以并不需要对温度进行精确的控制。因此制定以下方案,使用电阻与NTC温敏电阻进行分压,对一只MOS管或三极管进行控制。当温度低到一定阈值时,电阻与NTC电阻分压升高,打开加温电路,当温度回升后分压下降,降电路关闭。
  • 模拟信号是怎么转换成数字信号的? 带宽有限(band-limited) 采样频率大于2倍信号最高频率后可以无失真的恢复出原始信号。实际中,信号往往是无线带宽的,如何保证带宽有限?所以,我们在模拟信号输入端要加一个低通滤波器,使信号变成带宽有限,再使用2.5~3倍的最高信号频率进行采样。关于此我们下面将模拟数字转换过程将会看到。
  • 如何评估3D音频解决方案 沉浸式3D/空间音频,与XR/360视频相结合,给您带来宛若置身于茂密深林的视听体验——飘落的细枝在脚下嘎吱作响,一头鹿向东原跑去,当您的目光追着一只红衣凤头鸟而远去时,您能听见它扇动翅膀的声音。精准的头部跟踪有助于提供逼真的用户体验(UX),了解评估解决方案的关键因素,可以帮助您在不断发展的行业中找到方向。
  • 金线、银线,不如“无线”?——WiSA无线音频 我们知道,高端无线音频主要是用5GHz,而中低端普遍采用2.4GHz。这方面主要在于频谱的利用和技术原因,2.4G覆盖距离比5G长,但缺点是频宽窄。而WiSA的DS模块却能够做到“2.4GHz 比别人家的5GHz 更好,比自家的5GHz要差”。原因是什么?怎样解决无线音频的痛点?
  • 四个问题帮你确定是否需要采用有源电缆(AEC)解决方案 围绕信道长度、损耗预算和功耗最小化手段等重要问题,每个企业给出的答案都不一样。有如此多的因素推动着最终布线决策,因此在研究你的数据中心选择时,究竟需要了解些什么?
  • 利用IIoT进行智能水资源管理 我们需要有效的水资源管理,通过减少浪费和更有效地回收废水来节约用水。通过防洪减灾来保护脆弱的城市和基础设施也是如此。那么我们可以做些什么来解决这些问题呢?工业物联网(IIoT)可能会提供一些潜在的解决方案。
  • 适合工业应用的鲁棒SPI/I2C通信 状态监控、工厂自动化、楼宇自动化和结构监控等应用要求外设位于远程位置,通常远离控制器。系统设计人员传统上利用中继器或具有更高驱动强度的驱动器来扩展这些接口,其代价是整体成本和功耗增加。
  • 利用LM386音频放大器设计无线电接收器电路 LM386音频放大器IC可用于设计简单的无线电接收器电路,并且这些电路还能提供惊人的高性能。这些电路可用于接收中、短波波段的AM、CW和SSB射频传输,而不需要外部天线。
  • 新推出的同步SAR模数转换器的片内校准优势 本文评估在电阻模数转换器(ADC)前面的外部电阻的影响。这些系列的同步采样ADC包括一个高输入阻抗电阻可编程增益放大器(PGA),用于驱动ADC和缩放输入信号,允许直接连接传感器。但是,有几个原因导致在设计期间,我们最终会在模拟输入前面增加外部电阻。以下部分从理论上解释预期的增益误差,该误差与电阻大小呈函数关系,且介绍最小化这些误差的几种方式。本文还研究电阻公差和不同的校准选项对ADC输入阻抗的影响。除理论研究之外,还使用试验台测量和比较几种设备,以证明片内增益校准功能能实现出色精度。增益校准功能使广泛前端电阻值的系统误差低于0.05%,无需执行任何校准例程,只需对每个通道的单个寄存器执行写操作即可。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了