广告

引发虎门大桥异常振动的卡门涡街,还能发电!

2020-05-13 10:50:40 朱磊 阅读:
4月26日,武汉鹦鹉洲长江大桥像波浪一样起伏,吓煞一众路人。一波未平一波又起,5月5日,广东虎门大桥也出现大幅摇晃,瞬间引发网友们热议。其实,鹦鹉洲长江大桥和虎门大桥的摆动都与风有关,罪魁祸首正是风产生的卡门涡街。

近日,广东虎门大桥出现大幅摇晃,瞬间引发网友们热议。其实早在4月26日,武汉鹦鹉洲长江大桥像波浪一样起伏,就曾吓煞一众路人。Avkednc

Avkednc

虎门大桥大幅摆动,图自央视网新闻Avkednc

Avkednc

作为中国自行设计建造的第一座现代化特大型悬索桥,虎门大桥被认为是我国二十世纪桥梁建设领域的最高成就,其建成通车不过二十年,按照我国桥梁建设动辄一百年的规划标准,基本可排除存在设计缺陷的可能性。Avkednc

其实,鹦鹉洲长江大桥和虎门大桥的摆动都与风有关,罪魁祸首正是风产生的卡门涡街。Avkednc

下面让我们一起来了解一下这个神奇的卡门涡街吧!Avkednc

卡门涡街是什么鬼?

如果徜徉在小桥流水间,你一定会发现,当河水流速较快时,水流在遇到桥墩后会被分成两股绕行。奇妙的是,两股水流并不对称,而是呈现出两组交替的小漩涡向下游运动。Avkednc

比如这样:Avkednc

Avkednc

卡门涡街示意图(图片来源:维基百科)Avkednc

类似上面这种流体绕过物体时产生两排交错涡旋的现象,在流体力学中被称为卡门涡街,最初由钱学森的导师冯·卡门发现并命名。至于为何两排涡旋不对称,至今仍是困扰流体力学家的一个迷。Avkednc

日常生活中,当风吹过桥面时大多都会形成卡门涡街,两组周期性的、交替变化的涡旋分别对桥面上下产生作用力,桥面就随之振动起来。Avkednc

由于桥面通常设计成流线型,两组涡旋紧贴桥面,作用力较小,引起的振动幅度很小,平时很难被察觉到。Avkednc

然而,近期人们在对虎门大桥进行维护时,在桥面上放置了一排隔离挡板。这些一米多高的小家伙瞬间破坏了大桥的气动外形,两组涡旋与桥面脱离,作用力的大小和频率都增大,一旦作用频率与桥梁本身固有频率一致而形成共振,桥面产生显著起伏也就不足为奇了。Avkednc

Avkednc

虎门大桥桥面放置的隔离挡板改变了大桥气动外形(图片来源:央视网新闻)Avkednc

卡门涡街有何危害?

卡门涡街常常对桥梁造成危害,其中最经典的案例莫过于美国塔科马大桥的坍塌。Avkednc

1940年11月,建成仅4个月的塔科马大桥在低速风中发生强烈摆动,振动幅度一度达到惊人的9米,随后桥梁轰然垮塌坠入海中。后来的研究表明,事故元凶正是卡门涡街引起的共振。Avkednc

塔科马大桥的坍塌震惊了当时的桥梁界,此后桥梁模型风洞测试被纳入桥梁试验中,桥梁的风致振动问题也发展成为一门新兴学科。Avkednc

Avkednc

塔科马大桥垮塌瞬间(图片来源:搜狐)Avkednc

值得一提的是,卡门涡街似乎对悬索桥情有独钟,鹦鹉洲长江大桥、虎门大桥与塔科马大桥均为悬索桥。悬索桥,即俗称的吊桥,由于无需在桥中心设置桥墩,可以造得很高,常用于跨水大桥的设计中,以便船舶自由通行。Avkednc

但悬索桥却有个先天的毛病——固有频率低、稳定性差,因此它对风载荷非常敏感,很容易受到卡门涡街的影响。Avkednc

不过,自塔科马大桥之后,现代悬索桥在建设前都会考虑抗风振设计,建成后也会安装桥梁变形实时监测系统,因而行经悬索桥时大可不必恐慌。Avkednc

Avkednc

悬索桥是卡门涡街最为偏爱的桥梁(图片来源:中资路桥)Avkednc

除了桥梁,卡门涡街还可能给高楼、烟囱等建筑带来安全隐患,在中央广播电视塔、东方明珠电视塔建造前,都曾考虑了卡门涡街的因素。Avkednc

卡门涡街的妙用

事物总有两面性,卡门涡街也并非无恶不作,它同样能够为人所用。Avkednc

既然卡门涡街可以对物体施加周期性的作用力,何不用它来发电呢?哈尔滨工程大学的科研人员就设计了这样一种发电装置。Avkednc

他们制作的迎风桶在风的吹拂下可产生卡门涡街,周期性作用于放大板,使其做往复摆动,从而带动发电机转子旋转,切割磁感线产生电流。Avkednc

此外,人们研究流水中的卡门涡街后进一步发现,在障碍物两侧形成的涡旋交替频率与被阻塞的流量成正比,因此发明了涡街流量计,用以测量管道内的流量。Avkednc

如今,涡街流量计已被广泛应用于工业生产中。Avkednc

Avkednc

涡街流量计原理示意(图片来源:instrumentationtools)Avkednc

看到这里,你是不是对卡门涡街有了一个更全面的认识呢?Avkednc

这种神奇的现象催生了一门新的学科,也同样能够被人类所利用哦~Avkednc

(本文授权转载自公众号蝌蚪五线谱,责编:Demi Xia)Avkednc

  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 纳米技术加持:生物光子学迎接医疗应用前景 本文介绍四个相关用例,说明以激光驱动的生物光子学结合纳米技术的应用如何共同实现更理想的医疗健康效果。
  • 复旦大学研究人员发明晶圆级硅基二维互补叠层晶体管 复旦大学研究团队将新型二维原子晶体引入传统的硅基芯片制造流程,实现了晶圆级异质CFET技术。相比于硅材料,二维原子晶体的单原子层厚度使其在小尺寸器件中具有优越的短沟道控制能力。
  • 宝马AI“超级大脑”上线,驱动在华数字化发展 近日,宝马率先在华部署了代号为“灯塔”(BEACON)的人工智能(AI)平台,提供AI应用创新相关的开发、部署、集成与运行服务的平台化环境,加速实现多业务场景数字化。
  • 西工大打破吉尼斯世界纪录,扑翼式无人机单次充电飞行15 据西北工业大学官宣其扑翼式无人机单次充电飞行时间获得新的吉尼斯世界纪录,认定的纪录时间为 2 小时 34 分 38 秒 62(突破 154 分钟)。本次刷新世界纪录的“云鸮”扑翼式无人机采用了高升力大推力柔性扑动翼设计、高效仿生驱动系统设计和微型飞控导航一体化集成等关键技术,翼展 1.82m,空载起飞重量为 1kg,手抛起飞,滑翔降落,能够按设定航线自主飞行,飞行过程中能实时变更航线。
  • 电化学腐蚀制备新技术发表,“一步到位”制作电池电极 据了解,天津大学“英才计划”特聘研究员吉科猛团队联合湖南大学谭勇文教授团队利用钴磷合金研发出了仅用一步即可制成电池电极的电化学腐蚀制备技术,该相关研究成果将于近日发表在国际期刊《先进材料》上。
  • 麻省理工开发出纸一样薄的太阳能电池,每公斤功率是传统 麻省理工学院称其工程师开发出超轻织物太阳能电池,可以快速轻松地将任何表面变成电源。这些耐用、灵活的太阳能电池比人的头发丝细得多,粘在坚固、轻便的织物上,使其易于安装在固定表面上。它们的重量是传统太阳能电池板的百分之一,每公斤产生的功率是传统太阳能电池板的18倍。
  • iPhone 15全面升级,Ultra版本或超万元起售 据多方消息,明年苹果将在手机产品线上进行大范围的升级,如今的Pro版将不再是最高端版本,而是将推出一个全新产品iPhone 15 Ultra。
  • 英特尔展示下一代半导体器件技术,计划2030年实现万亿级 日前,英特尔在IEDM上展示多项与半导体制造技术相关的研究成果:3D封装技术的新进展,可将密度再提升10倍;超越RibbonFET,用于2D晶体管微缩的新材料,包括仅三个原子厚的超薄材料;能效和存储的新可能,以实现更高性能的计算;量子计算的新进展。此外,英特尔表示,目标是在2030年实现在单个封装中集成一万亿个晶体管。
  • 通过GaN电机系统提高机器人的效率和功率密度 机器人应用成功的关键因素之一是确保最佳的电机驱动器设计。
  • 湖南大学:基于2D的范德华异质结构,可用于晶体管及存储器 电子工程研究的一个关键目标是开发高性能和高能效的计算设备,这意味着它们可以快速计算信息,同时消耗很少的能量。一种可能的方法是将执行逻辑操作的单元和存储组件组合到一个设备中。
  • Codasip宣布成立Codasip实验室,以加速行业前沿技术的开 Codasip今日宣布成立Codasip实验室(Codasip Labs)。作为公司内部创新中心,新的Codasip实验室将支持关键应用领域中创新技术的开发和商业应用,覆盖了安全、功能安全(FuSa)和人工智能/机器学习(AI/ML)等方向。
  • 了解机器感知:激光雷达、3D视觉和地理空间AI 随着人工智能(AI)和物理世界的交叉,以及自主技术采用的增加,有人可能会提出质疑,机器及其目前脆弱的模型如何能以人类的方式感知世界。借助于诸如激光雷达、雷达和摄像头等自动驾驶汽车上所使用的传感器技术,机器已开始能收集实时数据来为决策提供信息,并适应现实世界的场景。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了