广告

微波炉的出现和军工有关

2020-05-20 14:44:05 中国科普博览 阅读:
很多人对微波炉的了解并不够,只要是食物,就喜欢用微波炉“叮”一下,导致频频“翻车”。为什么微波炉不能加热鸡蛋?放进微波炉加热的食物为什么不能用金属器皿来盛?要了解这些,我们需要先知道微波炉加热食物的原理。

疫情宅家的日子,微波炉成了很多人解决吃饭问题的好帮手。然而,很多人对微波炉的了解并不够,只要是食物,就喜欢用微波炉“叮”一下,导致频频“翻车”。为什么微波炉不能加热鸡蛋?放进微波炉加热的食物为什么不能用金属器皿来盛?要了解这些,我们需要先知道微波炉加热食物的原理。IKyednc

IKyednc

图片来源:微博IKyednc

微波炉是怎样将食物加热的?

微波炉加热食物的原理是用微波辐射来加热食物。微波和我们平时所见的光一样,都是一种电磁波。微波专门指的是波长在1毫米到1米之间的电磁波。可见光指的是波长在400到700纳米之间的电磁波。IKyednc

一般的家用微波炉产生的微波的频率是2.45GHZ左右,波长在12厘米左右。当用微波炉加热食物的时候,食物的分子会吸收微波所携带的能量,吸收了能量的食物分子会发生振动,这种振动在宏观上的表现就是食物温度的升高。IKyednc

IKyednc

微波炉是利用微波来加热食物的IKyednc

更具体的说,微波炉采用的是介电加热。介电加热指的是指利用电磁辐射来加热介电质的一种方式,介电质是一种可被电极化的绝缘体。IKyednc

比如说,水就是一种介电质,一个水分子包含两个氢原子和一个氧原子。虽然水分子整体上是电中性的,但是氧原子带负电荷,而氢原子带正电,如下图所示。水分子的这种性质让水成了一种理想的介电质。IKyednc

IKyednc

水分子示意图IKyednc

将把水分子置入电磁波中,由于电磁波中电场的作用,水分子中的带负电的氧原子会倾向于朝反着电场的方向位移,而氢原子会朝着电场的方向移动。氧原子和氢原子的这种位移是很小的,并不足以导电,这种现象就叫做介电质的电极化。IKyednc

IKyednc

介电质的极化IKyednc

当把水放入微波炉加热时,微波炉发出的微波的电场不断变换着方向,水分子的氧原子和氢原子就不断的变换位置,这种位置的变化可以理解成水分子的振动。随着时间的流逝,水中大多数分子都会产生这种振动,水温就会变高。IKyednc

另外,脂肪和糖也是电介质,但是它们的分子在电场中移动的位置比水小,因此加热它们需要更长的时间。IKyednc

IKyednc

微波炉加热食品主要加热的是食品里面的水分IKyednc

有些人可能听过这样一种说法,说微波炉是从内到外加热食物的,这种说法是正确的吗?IKyednc

对于一些有外壳的食物,情况可能确实如此。比如说鸡蛋,鸡蛋内部是液体,是良好的介电质,在微波炉内容易被加热,而鸡蛋外壳,则被加热的很慢。当把鸡蛋放进微波炉加热时,鸡蛋内部会首先热起来,内部的热量被外壳禁锢着得不到释放,当加热到一定程度时,鸡蛋壳就会被撑破,鸡蛋就会爆裂。IKyednc

对于普通的食物,比如说馒头,米饭,面包等等,它们内部的水分分布比较均匀,当放进微波炉时,它们都是被均匀加热的,并不是从内到外加热的。IKyednc

了解了微波加热的原理,我们才能更好地避开微波炉使用雷区。IKyednc

微波炉不能用来加热什么?

微波炉加热食物,主要是加热食物中的水分。一般来说,如果一个食物特别干燥,是不宜使用微波炉来加热的。IKyednc

例如,纸币不能放入微波炉里面加热。这些干燥的易燃物不是介电质,它们不会吸收微波炉的热量,所以会导致微波炉里面的温度越来越高,当高于一定温度时,就会点燃这些可燃物。IKyednc

IKyednc

被微波炉烧掉的纸币IKyednc

另外,使用微波炉加热的一个很重要的原则是,不要把金属放入微波炉。这是因为用微波炉加热金属时,微波炉发出的能量并不会被金属吸收,而是被金属反射,这时微波炉里面积聚的能量会越来越多,当能量达到一定程度时微波炉甚至会起火爆炸。IKyednc

另外,正是由于金属可以反射微波,所以微波炉的四周和门都是用金属做的,这样可以有效地把微波限制在微波炉内部,防止微波逸出,造成安全隐患。IKyednc

厨房不愧也是“战场”,微波炉的出现和军工有关

你可能想不到,厨房里的微波炉最开始竟是由一个军工企业率先制造出来的,这是怎么一回事呢?IKyednc

这就要从微波炉里面产生微波的装置——磁控管说起。磁控管最初是给军用雷达使用的,用来探测飞机和导弹。二战结束以后,制造磁控管的公司业绩大不如前。一些磁控管制造商,例如雷神公司(Raytheon Company),急切地想把该技术应用到新的领域来盈利。IKyednc

二战时期,科技界已经普遍知道无线电波能够加热介电材料,并且在工业和医疗环境中相当普遍地使用介电加热技术。用无线电波加热食物的想法也已经出现。一些公司和实验室也一直在研究这种技术,在1933年在芝加哥举行的世界博览会上,西屋公司更是展示了一个10千瓦的短波无线电发射机,该发射机可以在两个金属板之间煮牛排和土豆。但是在二战时期这种现象并没有被深入的研究。IKyednc

IKyednc

雷神公司制造的Raydarange 微波炉IKyednc

直到1945年,雷神公司的工程师珀西·斯潘塞(Percy Spencer)在这个想法上前进了一步。斯宾塞当时正在测试用于雷达装备的微波辐射器(磁控管)时,突然感觉西裤的口袋里有点不对劲,甚至听到了咝咝的声音。斯宾塞停下手里的工作,结果发现是他口袋里装的一块巧克力融化了。他猜可能是磁控管发射的微波烤化了巧克力,虽然这不是一种新的现象,但是斯宾塞决定用不同的食物去研究这种现象。IKyednc

斯宾塞通过将磁控管发射器连接到封闭的金属盒上,制造出了世界上第一台真正的微波炉。然后,他将各种食品放入盒子中,同时观察效果并监控温度。IKyednc

后来雷神公司的管理层得知了斯宾塞的发明,马上给这个发明申请了专利,并于1946年推出了首台商用Radarange微波炉。IKyednc

但这个时候的Raydarange是一个非常昂贵的设备,而且在工作时候必须不断的用水进行冷却,使用起来不是很方便,只能在餐馆进行使用,并不适合普通的家庭。IKyednc

IKyednc

Tappan RL-1 壁挂式微波炉IKyednc

到1955年,雷神公司已开始许可其它公司使用其微波技术来制造微波炉。之后不久,Tappan公司给消费者设计了第一台实用的微波炉Tappan RL-1。IKyednc

Tappan RL-1是壁挂式微波炉,售价高达1,295美元(相当于今天的11,000美元),大多数人根本负担不起。十年后,雷神公司收购了Amana Refrigeration公司,之后于1967年开始以495美元出售Amana Radarange微波炉。随着技术的进步,微波炉的价格也越来越便宜。IKyednc

在80年代,微波炉在美国家庭变得越来越普遍。这个时候微波炉也开始走进中国家庭的厨房,随着中国企业的进一步参与,微波炉也很快在中国实现了普及。IKyednc

IKyednc

1967年的Amana Radarange 微波炉,和现在的微波炉已经十分相像了IKyednc

军用的技术也可以转换为民用技术,造福于普通的民众,类似的发展还有雷达,核能等。IKyednc

军用磁控管变身民用微波炉,这么厉害的厨具可不止热剩菜饭的功能哦。IKyednc

责编:Demi XiaIKyednc

(来源:中国科普博览;版权归中国科普博览所有IKyednc

  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 谷歌支持LTE的Pixel Watch BoM 报告:成本123美元,三星占 据EDN电子技术设计报道,根据Counterpoint的材料清单报告显示,支持 LTE 的 Pixel Watch 的制造成本为123美元。此版本的Pixel Watch发售时售价为 399 美元,成本价格比零售价低约276 美元。
  • 晶圆厂联手封测厂,为供应链赋予新意 在半导体产业日益关注封装技术创新,以超越芯片微缩的困境之际,晶圆厂联手封测厂的合作伙伴关系将支撑起下一代封装技术,并彰显封装技术在半导体供应链的重要意义...
  • MWC 2023落下帷幕,盘点国产厂商的那些亮眼表现 MWC 2023(世界移动通信大会2023)于2月27日在巴塞罗那正式向全球移动产业伙伴开启,大会也于3月2日正式落下帷幕。展会持续五天,根据官方数据统计,2023年MWC有2000多家全球厂商参展,中国有以OPPO、荣耀为代表的共计28个国产厂商参展。本次展会,各大厂商纷纷拿出自己的看家本领,可谓是亮点多多,今天就带大家一起看看展会上国产厂商展现的那些亮眼技术吧~
  • IEC 61000-4-3标准的步进频率 本文重点在于讨论如何使用更简略的步骤进行IEC 61000-4-3标准的EMI/EMC测试,以加快产品开发时间...
  • 小米预研固态电池技术前景诱人,能量密度突破1000Wh/L 3月1日,小米又宣布预研固态电池技术,通过将电解液替换为固态电解质,不仅能量密度突破1000Wh/L,更大幅提升低温放电性能和安全性,称“有望一举解决手机电池三大痛点”。
  • Win11端Phone Link添加新支持,iPhone能在PC端接打电话 3月1日,微软宣布,为Win11平台上的Phone Link应用程序添加对iPhone的支持。用户通过该应用程序连接PC和iPhone之后,可以在PC端拨打和接听电话、发送和接收短信、直接在PC上查看iPhone的通知。预览版要求Phone Link应用程序版本1.23012.169.0或更高版本。
  • 用于GaN HEMT的超快速分立式短路保护 GaN HEMT的保护电路必须比硅基MOSFET中使用的传统短路和过流保护方法更快。
  • 等离子体抛光干式蚀刻为下一代SiC带来质量优势 尽管化学机械抛光(CMP)有一段时期一直是最常用的基板抛光技术,但随着一种新引进的技术——等离子体抛光干式蚀刻(PPDE)被提出,可望克服CMP带来的一些限制。
  • 传音Tecno品牌MWC 2023首秀,手机后盖1600色一键更换 据外媒消息,传音Tecno在世界移动通信大会(MWC 2023)上展示了其Chameleon Coloring Technology(变色龙着色技术)。这项技术可以嵌入到智能手机的背板中,只需按一下控制键,就可以在手机的背板上产生多种颜色的变化。
  • Arteris FlexNoC 5物理感知NoC IP,物理融合速度快5倍 据Arteris官网消息,系统IP供应商Arteris宣布推出物理感知片上网络(NoC)互连IP Arteris FlexNoC 5,可使SoC架构团队、逻辑设计人员和集成商能够整合跨功率、性能和面积(PPA)的物理约束管理,以提供连接SoC的物理感知IP。该技术使物理融合速度比手动优化快5倍,且布局团队可以减少汽车、通信、消费电子、企业计算和工业应用的迭代次数。
  • 深耕显示器领域14载,飞帆泰赋能全球数字化设备发展 “成电协·会员行”专题内容团队今天走进的正是在显示器领域深耕了14载,致力于赋能全球数字化设备发展的优秀会员企业——四川省飞帆泰科技有限公司。
  • 谷歌达成量子计算机第二里程碑,实现量子计算纠错 2月24日,谷歌CEO Sundar Pichai撰写博客,称公司量子计算又向前迈了一大步。谷歌量子AI团队有史以来首次通过实验证明:可以通过增加量子比特的数量来减少错误。在其最新的研究中,谷歌用49个物理量子比特制作的逻辑量子比特超越了用17个量子比特制作的逻辑量子比特。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了