广告

宽禁带半导体助力电动汽车充电实现高效率

2020-07-28 Maurizio Di Paolo Emilio 阅读:
经典的电动汽车充电桩电路由电流整流级和随后的DC-DC转换器级组成。整流器电路由具有非线性特性的二极管组成,因此具有相当低的功率因数和大量不期望的谐波分量。只有通过精心设计功率因数校正(PFC)电路才能实现高效率,而宽禁带半导体在此就能发挥优势。

与传统的内燃机汽车相比,电动汽车(EV)可以减少对环境的影响并降低运营成本,因此它们代表了电动交通(e-mobility)成功的基本因素。在电动汽车充电网络尚未达到类似于普通加油站的毛细作用时,电动汽车必须配备车载充电电路,以便确保高效率和长距离行驶。电池的充电首先需要将电源从交流电(可从配电网络获得)转换为直流电。用于实现这一能量转换的电路拓扑相当标准,包括半桥和全桥整流器电路以及经典的“图腾柱”配置。lVLednc

如何实现高效率

经典的电动汽车充电桩电路由电流整流级和随后的DC-DC转换器级组成。整流器电路由具有非线性特性的二极管组成,因此具有相当低的功率因数和大量不期望的谐波分量。只有通过精心设计功率因数校正(PFC)电路才能实现高效率。lVLednc

为了提高功率因数并减少谐波失真,通常采用基于有源功率因数校正(APFC)的解决方案。对于有源开关电路来说,APFC是必不可少的——有源开关电路在其输入端接收整流电压并对其进行升压直至其达到直流设定值,从而检查线路电流是否保持所需的正弦波形。lVLednc

原则上可以说,在理想的PFC电路中,输入电流“跟随”输入电压,就表现得像纯电阻一样,并且在输入电流中不会表现出谐波。在能够处理几千瓦功率的大功率设备(如EV充电桩)中,有源PFC采用升压转换器电路实现。lVLednc

图1所示,在一定时间间隔内,升压转换器使输入电流存储在电感器中。随后,当开关S打开时,该能量就会通过D二极管到达C0电容器。电感器的行为就像是与输入电流串联的电流源,因此输出电压始终高于输入电压:在220-240VAC输入下,输出获得的电压超过340V(全球范围内普遍使用380至400V)。另外,请注意,PFC级之后总是跟随有DC-DC转换器,并且有与输入有关的输出隔离。lVLednc

lVLednc

图1:典型的PFC升压转换器的框图。lVLednc

宽禁带器件

用MOSFET代替二极管,可以进一步改善图1的电路——每个MOSFET都可以用作升压开关和同步整流器。但是,高压MOSFET的体二极管反向恢复特性通常较差,因此,到目前为止,无桥图腾柱电路还不是很普遍。lVLednc

宽禁带(WBG)器件(例如碳化硅和氮化镓)的问世,使采用新电路实现EV充电成为可能。WBG器件的禁带宽度比硅基器件大两倍或三倍,因此可以承受更高强度的电压和电场(电子从阻断区传递到传导区所需要的能量要大两倍或三倍)。lVLednc

因此,WBG器件的击穿电压要高得多,而导通电阻要低得多。在诸如EV充电桩等大功率电子电路中,高击穿电压可简化设计并提高效率。导通电阻值降低代表了高压电路的另一个优点,因为它可以减少开关损耗和功率损耗,从而实现特别紧凑的封装。WBG器件的另一个优点是,在相同的工作条件下,与硅基器件相比,它们能够产生更低的温度。在面向高压应用的电路中,SiC器件可以承受高于200℃的结温,而对应的硅器件则最高只能承受150℃的结温。在EV充电桩中使用WBG器件,可实现更高的开关速率和更高的能源效率,进而转变为更紧凑、更简单的冷却模块。lVLednc

ADI公司提供各种小型隔离式栅极驱动器,旨在满足SiC和GaN等功率开关技术所需的更高开关速度和系统尺寸限制。这些隔离式栅极驱动器基于ADI公司成熟的iCoupler隔离技术,并结合了高速CMOS和单片变压器技术。ADuM4122器件是一款隔离式双路输出驱动器,可在输入和输出两个区域之间提供5kV RMS真电流隔离。在开关器件栅极需要快速上升时间的情况下,需要使用栅极驱动器。如图2所示,ADuM4122采用由聚酰亚胺隔离层隔开的iCoupler芯片级变压器线圈,利用高频载波跨隔离栅传输数据来实现栅极驱动器控制侧和输出侧之间的隔离。lVLednc

lVLednc

图2:ADum4122隔离功能的工作框图。lVLednc

在高功率密度应用中,例如电动汽车的DC-DC转换器,必须获得较高的共模瞬态抗扰度(CMTI)值。高CMTI值使在高开关频率应用中使用栅极驱动器成为可能。ADI公司的小尺寸栅极驱动器经过精心设计,可以承受SiC和GaN等宽禁带器件所需的高开关频率和严格的时间限制。lVLednc

EVAL-ADuM4122EBZ评估板(如图3所示)可支持具有压摆率控制的ADuM4122隔离式栅极驱动器。该评估板提供跳线和螺钉端子,可以配置不同的驱动条件,而在VIN+和SRC引脚上接受方波和DC值。SRC引脚可控制VOUT_SRC引脚是设置为高阻态,还是遵循用户在VIN+上提供的脉宽调制(PWM)输入的逻辑。当外部串联栅极电阻器将VOUT和VOUT_SRC两个引脚的输出组合在一起时,一个隔离式栅极驱动器便可以具有两种易于选择的压摆率。EVAL-ADuM4122EBZ可测试该器件的传播延迟、驱动强度、压摆率选择和输入逻辑。lVLednc

lVLednc

图3:EVAL-ADuM4122EBZ评估板。lVLednc

无线充电

电动汽车无线充电会使用电感器(通常放置在沥青下方)和汽车车载接收器。无论车辆是静止不动还是在运动中,磁性板都会为电池连续充电,从而实现自动充电。lVLednc

在无线输电领域,工程师需要具有大功率和高效率GaN基解决方案的解决方案。GaN Systems公司广泛的晶体管产品组合提供了大功率无线充电解决方案,可为若干苛刻的应用设计更小、更便宜、更高效的电源系统。GaN Systems的650V增强模式技术采用散热效率高、低成本的PDFN封装进行封装,尺寸小至5.0mm×6.0mm。这种小电流晶体管的额定电流为3.5A、8A和11A,其RDS(on)范围从500mΩ至150mΩ。lVLednc

lVLednc

图4:GS-065-150 650V GaN功率晶体管。(图片:GaN Systems)lVLednc

通过合作,PowerSphyr和GaN Systems共同致力于开发适用于无线充电标准的硬件和固件解决方案。lVLednc

这一伙伴关系表明了两家公司提供易用、高性能、完整的无线充电解决方案的承诺(图4)。lVLednc

(原文刊登于EDN姊妹网站Power Electronics News,参考链接:Wide bandgap application in EV chargerlVLednc

本文为《电子技术设计》2020年8月刊杂志文章,版权所有,禁止转载。免费杂志订阅申请点击这里lVLednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
Maurizio Di Paolo Emilio
Maurizio Di Paolo Emilio拥有物理学博士头衔,也是一名电信工程师和记者。 他曾参与引力波研究领域的各种国际项目,曾与研究机构合作设计空间应用数据采集和控制系统。 他的几本著作曾在斯普林格出版社出版过,并撰写过许多关于电子设计的科学和技术出版物。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 英特尔新CEO建厂又代工,“IDM 2.0”战略能否引发行业变 日前,刚刚上任仅一个月的英特尔新任 CEO 帕特·基尔辛格(Pat Gelsinger)在英特尔公司的一次大会上,宣布了多个宏大计划:投资200亿美元新建两家全新的芯片厂,扩大采用第三方代工产能、增设“Intel代工服务部”打造英特尔代工服务(IFS),并公布英特尔7纳米制程进展顺利。
  • 从月入1.5万到年薪201万,芯片行业什么职位更有“钱途” 作为“高精尖”产业,芯片人才的薪资一直是大家关注的焦点,那么在芯片行业如此庞大的产业链中,从EDA到设计,从材料到制造,再到封装测试及应用,哪些职位更有“钱途”呢?
  • R汽车携R-TECH及全新物种ES33亮相“R品牌共创者生态大 “R品牌共创者生态大会”在“全球创新之都”深圳盛大举办。在全球跨领域战略盟友及R品牌用户的共同见证下,“R-TECH高能智慧体”完成了精彩震撼的全球首秀。作为R汽车的全新技术品牌,“R-TECH高能智慧体”将成为R汽车向智能车时代迈进的新起点。
  • 瑞萨工厂电流过大引发火灾?临时停产一个月,丰田等受重创 近日瑞萨电子旗下的一间12英寸芯片工厂发生火灾,此次发生火灾的是瑞萨旗下生产车用半导体的重要工厂,也是主要的300毫米直径晶圆生产厂,三分之二的芯片产品属于汽车芯片。当地的消警人员初步认为,引起这场火灾的原因是N3大楼一楼的电镀设备因为电流过大而起火。
  • 在突破中崛起的中国半导体行业盛会-2021中国IC领袖峰 近年来,受外因影响和内因推动,中国Fabless公司数量、上市公司数量、以及新兴的EDA、IP企业等数量急剧增加。为鼓励和支持本土半导体产业链的快速和有序发展,今年举办的中国IC领袖峰会进行了全面升级。除规模比往年扩大之外,同期还举办了SoC设计论坛,首度公布和解读了‘中国Fabless100家公司排行榜’,同场发布了IC设计工程师和企业高管调查报告,并结合新型线上虚拟展会以及线下30+家展台,向参会者及线上用户展示了最新技术及产品。
  • 论国产数字芯片设计EDA平台的重要性 据了解,全世界的信息量真的能够被有效利用的不足1%,这意味我们虽然能够捕捉获取很多信息,但真正能够将其互享、检索、保护、传播、处理的少之又少,海量的信息到目前为止还远远没有被充分的挖掘。要想把这些信息能够充分的利用起来,核心问题就是在于算力,算力有许多办法实现,但归根到底离不开半导体。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了