广告

一种深紫外光光阻精准分析技术:低温真空原子层沉积技术

2020-12-01 09:09:40 阅读:
原子层沉积技术(Atomic layer deposition, ALD)近年在集成电路制程设备产业中受到相当大的瞩目,对比于其他在线镀膜系统,原子层沉积技术具有更优越的特点,如绝佳的镀膜批覆性以及精准的镀膜厚度控制。

原子层沉积技术(Atomic layer deposition, ALD)近年在集成电路制程设备产业中受到相当大的瞩目,对比于其他在线镀膜系统,原子层沉积技术具有更优越的特点,如绝佳的镀膜批覆性以及精准的镀膜厚度控制。随着逻辑制程演进,原本二维的晶体管架构已经被三维的鳍鱼式晶体管(FinFET)取代,关键尺寸(Critical dimension, CD)也由深次微米进入到目前只有单一数字的纳米大小,对于镀膜的批覆性与厚度控制都有最严苛的要求,这让原子层沉积技术成为先进鳍鱼式晶体管与将来环绕式栅极(Gate-all-around, GAA,或其他类似结构)晶体管制程最重要的镀膜技术。DyYednc

原子层沉积技术除了上述在集成电路制程上的应用外,还有一个尚未没被报导过的应用: 可以将原子层沉积技术应用在材料分析上,例如穿透式电子显微镜(Transmission electron microscope, TEM),用来制备一层在欲分析试片上的保护层。我们都知道,目前制备TEM试片(lamella)最常用的工具是聚焦离子束(Focused ion beam, FIB),FIB制备过程中,为了保护欲分析位置,一般的作法是在试片表面制备一层保护层,保护层常用的材料为碳系的胶类或是金属,其保护层厚度大约介于数十纳米到500纳米之间,主要可以利用旋转涂覆或是真空镀膜系统制备。既然是用来保护欲分析的试片,所以在制备保护层过程中是不能改变试片结构,造成事后材料分析上的困扰,依据不同的制备机制(尤其是真空镀膜),有两项主要会影响欲分析试片结构的因素需要被严肃看待,分别是温度与离子轰击效应。对于较旧制程的试片(大于28纳米),试片结构与材料都相当稳定与坚固,根据我们多年的经验,一般制备条件都不会改变或损伤欲分析试片的结构。DyYednc

当分析的结构为先进制程的试片时(16纳米以下),情况则变得相当复杂,不但关键尺寸持续的微缩外,制程过程中也引进了不少新材料, 例如,已经开始应用在7纳米与未来环绕式栅极制程的深紫外光光阻(Extreme ultraviolet photoresist, EUV-PR)。根据国际期刊报导,深紫外光光阻相当脆弱,而且对于温度与离子轰击相当地敏感,如果使用运用在旧制程试片上的传统方式制备保护层,欲分析试片的结构很有可能因温度或离子轰击而损伤或变形,造成分析上的困难。另外,利用传统制备方式对于较小关键尺寸的结构,如贯孔(via)或沟(trench),保护层的批覆性也会是个难题,小尺寸结构开口处容易造成保护层材料堆积而缩口,产生孔洞或气泡,这些人为的结构都有可能会在FIB制备时产生不必要的刀痕,甚至在判读TEM影像上造成困难。DyYednc

图 1. 两种光阻结构分别利用两种制备保护层方式的TEM照片。a与b为一组,c与d为另一组,其中a与c是使用传统镀膜方式制备保护层,b与d则是使用低温真空原子层沉积技术制备。绿色箭号标示处为光阻变形最明显的区域。DyYednc

为了解决上述这些问题,泛铨科技跳脱旧有窠臼,提出一个革命性的想法,利用低温真空原子层沉积技术取代传统镀膜,制备欲分析试片的保护层。原子层沉积技术有绝佳的镀膜批覆性,即使是贯孔、沟、或甚至小关键尺寸的结构都能轻易制备保护层,不会形成人为孔洞,为了避免FIB制备时造成的刀痕与TEM观察时高能量电子束的轰击损伤,保护层都会制备厚于50纳米,这层保护层就像让欲分析的脆弱结构穿上无坚不摧的铠甲,有效抵御高能量离子束造成的损伤。针对试片表面的特性与分析目的,我们可以选用不同的保护层材料,但最重要的是,不管选用哪种材料,制备温度都只比室温高一些,远远比传统制备方式低很多,此低温制备对于最脆弱的深紫外光光阻尤其重要。有了上述这些利用低温真空原子层沉积技术保护试片的做法,我们才能获得精准的材料分析结果。DyYednc

图1a与1c分别是利用传统镀膜方式制备保护层在两种光阻结构上的TEM照片,图1b与1d为与1a与1c试片有相同结构与材料但不同试片的对照组,,保护层制备是采用泛铨所提出的低温真空原子层沉积技术概念。由这些图可以清楚比较出,传统镀膜制备方式确实对光阻造成程度不一的损伤,尤其在绿色箭号标示处,光阻变形的相当严重。反观使用低温真空原子层沉积技术制备的试片(图1b & 1d),光阻结构并没有明显的变形。DyYednc

为了确认低温真空原子层沉积技术制备保护层确实不会造成光阻材料变形与损伤,我们利用高分辨率的扫描电子显微镜(Scanning tunneling microscope, SEM)来观察在没有任何制备下最原始的光阻试片状况(图2a),其对应相同结构与材料的TEM结果则呈现在图2b中,比较这两图,可以清楚地看到SEM影像中所观察到的结构细节也都有出现在TEM影像中,这证明泛铨科技所提出使用低温真空原子层沉积技术制备保护层的概念确实不会对脆弱材料造成损伤。DyYednc

图 2. a 高分辨率SEM照片,该光阻试片没有经过任何镀膜处理,为原始表面照片。相同的试片再经过低温真空原子层沉积技术制备保护层后的TEM照片则呈现在b。比较两图可以清楚看到光阻结构并没有DyYednc

低温真空原子层沉积技术概念不但可以应用在分析脆弱材料的保护层制备上,也可以将其应用扩展到故障分析与表面分析上,尤其如果试片的保护层需要在最严苛条件制备时,低温真空原子层沉积技术都能派上用场。泛铨科技所提出的这项革命性的概念也在2020年获得专利,相信将来会有越来越多的材料会需要用到该技术。DyYednc

本文由泛铨科技供稿DyYednc

责编:Amy GuanDyYednc

  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 复旦大学研究人员发明晶圆级硅基二维互补叠层晶体管 复旦大学研究团队将新型二维原子晶体引入传统的硅基芯片制造流程,实现了晶圆级异质CFET技术。相比于硅材料,二维原子晶体的单原子层厚度使其在小尺寸器件中具有优越的短沟道控制能力。
  • 英特尔展示下一代半导体器件技术,计划2030年实现万亿级 日前,英特尔在IEDM上展示多项与半导体制造技术相关的研究成果:3D封装技术的新进展,可将密度再提升10倍;超越RibbonFET,用于2D晶体管微缩的新材料,包括仅三个原子厚的超薄材料;能效和存储的新可能,以实现更高性能的计算;量子计算的新进展。此外,英特尔表示,目标是在2030年实现在单个封装中集成一万亿个晶体管。
  • 上海特斯拉前员工:Model Y生产中降低某项重要工艺规格, 据EDN电子技术设计了解,12月8日上午,账号为Laniakea_1188的微博用户公开举报特斯拉,称上海特斯拉在Model Y车型生产过程中,降低某项重要工艺规格问题线索,并指出如果该项变化的风险评估、白车身验证、整车验证不充分,将不能排除影响承载式车身强度乃至整车安全性的可能。
  • 在美国企业抵制之下,美国将放宽联邦机构及承包商使用中 这议案被视为美国《国防授权法案》(NDAA)的一项修正案,遭到美国商会和其他贸易组织的抵制。这些组织在上个月的一封信中称,企业要确定大量电子产品中的芯片是否是中国企业制造的,成本将很高,难度也很大。
  • 台积电1nm制程工艺已实现技术突破,正谋划建1nm工艺工厂 近日有报道称台积电正积极推进1nm制程工艺,并们已在谋划1nm制程工艺工厂的建设事宜,以便按计划量产。早前EDN美国版曾报道台积电1nm制程工艺已实现技术突破,且逐渐成形。
  • 英特尔晶圆代工业务“阵前换将“,影响几何? 在英特尔积极推动的IDM 2.0计划中,最关键的在于重启该公司的代工业务,而今带领该公司晶圆代工业务的关键舵手Thakur即将离去,这将会对英特尔转型计划带来什么挑战?
  • 针对NVIDIA连接器熔化PCI-SIG 组织发表声明 PCI-SIG 组织发表公开声明以回应最近针对NVIDIA 12VHPWR连接器熔化的诉讼。
  • 并购还是有机增长?在市场恐惧时中国芯企业/产业资本该 本文将讨论近期巴菲特在目前的金融市场环境中入手台积电,给企业资本和产业资本为整合资源和各地方政府建设半导体产业生态带来的启发。
  • FinFET交棒GAA?关于GAA制程技术必须知道的事 现在正是FinFET交棒给GAA,以协助半导体产业提升芯片微缩至下一阶段的时候了。这一转型道路上可能不会一帆风顺,因为要打造GAA设计比起FinFET或平面晶体管更复杂得多了...
  • 探访安森美高性能图像传感器新“芯”品 深圳2022高交会期间举办的深圳机器视觉展上,笔者前往展馆实地探访了安森美的一系列高性能新产品。这次安森美带来了XGS系列CMOS图像传感器,特别是基于旗舰产品XGS 45000(4470万像素8192x5460)、XGS 5000(530万像素 2592 x 2048)、XGS12000(1200万像素4096x3072)、XGS 16000(1600万像素4000x4000)等的参考设计。
  • GAA技术到底是怎么一回事? 日前,高通在2022年的骁龙峰会上发布了骁龙8 Gen2平台,这一代CPU、GPU、AI等架构大幅升级,与此同时,高通也确认会继续使用三星的晶圆代工服务,而且他们最快会在两年上使用三星的GAA工艺,虽然没有明确表态,但高通的态度印证了也许将来会使用三星的3nm GAA工艺。那么所谓的GAA工艺又是什么呢?
  • 华为公开EUV光刻新专利,解决相干光无法匀光问题 华为日前公布了一项新专利,展示了一种《反射镜、光刻装置及其控制方法》, 专利申请号为CN202110524685.X,据介绍,这种方法便能够解决相干光因形成固定的干涉图样而无法匀光的问题,在极紫外光的光刻装置基础上进行了优化,进而达到匀光的目的。值得注意的是,光刻机作为半导体制造过程中最核心的设备,同时也是研发难度最高的设备……
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了