广告

高频负载点供电难,何解?

2022-10-20 11:59:16 ADI  阅读:
当前,新能源车正处于高速发展阶段,为动力负载供电系统的稳定运行提出了全新挑战。能否有一种新型大电流负载点转换器,可满足电源负载系统设计中对高效率、高密度、可靠功率级日益增长的需求。对此,ADI公司推出了LTC7050 SilentMOS™系列智能功率驱动器,成为有效解决上述难题的利器。

当前,新能源车正处于高速发展阶段,为动力负载供电系统的稳定运行提出了全新挑战。能否有一种新型大电流负载点转换器,可满足电源负载系统设计中对高效率、高密度、可靠功率级日益增长的需求。对此,ADI公司推出了LTC7050 SilentMOS™系列智能功率驱动器,成为有效解决上述难题的利器。QNfednc

何首选ADI LTC7050 SilentMOS系列QNfednc

LTC7050可以配置为对两个独立的电源轨供电,每个电源轨有单独的开/关控制、故障报告和电流检测输出;或者,该器件也可以配置为一个双相单输出转换器。LTC7051单通道140A功率级利用了LTC7050内核设计,通过单个电感提供更高的功率密度。QNfednc

LTC7050双通道单片式功率驱动器在电气和热优化封装中完全集成了高速驱动器和低电阻半桥电源开关,以及全面的监控和保护电路。借助合适的高频控制器,该功率驱动器可形成具有先进的效率和瞬态响应的紧凑型大电流稳压器系统。Silent Switcher® 2架构和集成自举电源支持高速切换,通过衰减输入电源或开关节点电压过冲来降低高频功率损耗,并最大限度地减少伴随的EMI。QNfednc

低开关节点应力增强功率级的稳健性QNfednc

在常规降压调节器设计中,输入电容和功率MOSFET之间的热环路电感会导致开关节点处出现较大的尖峰。SilentMOS LTC7050采用Silent Switcher 2技术,在LQFN封装内部集成了关键的VIN解耦电容。热环路的缩小导致寄生电感降低。此外,完全对称的布局消除了电磁场。图1比较了LTC7050布局与常规功率驱动器。如图2所示,当输入电压为12V且输出满载时,开关节点的峰值电压仅为13V。功率MOSFET上的峰值电压应力与其额定电压之间有充足的裕量,从而确保了器件的可靠性。完全集成的热环路消除了PCB布局敏感性,并使复杂的电磁抵消设计对用户清楚可见。为了正确测量开关节点振铃,请使用同轴电缆并将其从开关引脚焊接到本地接地,然后利用匹配阻抗在示波器上测量波形。QNfednc

QNfednc

1.SilentMOS LTC7050具有内部对称的小型热环路以便最大限度地减少振铃(a)显示LTC7050(b)显示常规DrMOS模块QNfednc

高效率和先进封装支持高功率密度QNfednc

LTC7050的转换损耗很低,因而在高频设计中,其比常规DrMOS模块效率更高。功率器件电流和电压的重叠时间由驱动速度决定。在多芯片DrMOS模块中,驱动速度受驱动器与功率MOSFET之间以及驱动器与其电容之间的电感限制。过快驱动MOSFET栅极可能导致功率器件/驱动器的栅极过压,并引发故障。另外,高di/dt会导致开关节点处出现较大的尖峰,因为热环路电感不可忽略。QNfednc

LTC7050的驱动器与功率回路集成在同一裸片上,并且所有栅极驱动器的电容都在封装中。由于取消了键合线,每个驱动环路中的寄生电感接近于零。与多芯片DrMOS模块相比,LTC7050开启和关闭功率器件的速度要快得多。开关节点电压的典型上升沿短至1ns,如图2所示。一流的驱动速度大大降低了转换损耗。高驱动速度允许LTC7050具有零死区时间,从而大大降低二极管导通和反向恢复损耗。QNfednc

QNfednc

2.开关节点波形ILOAD = 25A/相位QNfednc

考究的设计提升了高开关频率下的电源转换效率。图3显示了600kHz和1MHz时的12V至1.8V转换效率和损耗曲线。对于1MHz设计,峰值效率超过94%。QNfednc

QNfednc

3.效率和损耗曲线QNfednc

图4显示了600kHz和1MHz时的12V至1.0V转换效率和损耗曲线。QNfednc

QNfednc

4.效率和损耗曲线QNfednc

对于图4所示的1MHz设计,60A时的效率几乎为90%,而总功率损耗(包括电感损耗)小于7W。LTC7050的散热增强型5mm×8mm LQFN封装的热阻抗很低,为10.8°C/W。低损耗和低热阻抗使LTC7050可以取代两个行业标准5mm×6mm DrMOS模块。图5显示了LTC7050在12V至1V/60A转换、开关频率为1MHz时的热图像。在整个温度范围内,外壳温升约为68°C。QNfednc

QNfednc

5.LTC7050的热图像QNfednc

测试条件:VIN = 12V,VOUT = 1V,IOUT = 60A,无气流,电路板持续运行30分钟以上。QNfednc

严格的故障警报和保护系统确保负载安全QNfednc

LTC7050系列集成了一系列故障检测、警报和保护特性,以确保系统安全。QNfednc

LTC7050为顶部和底部FET提供了经过全面测试的过流保护。当功率器件提取流经功率FET的瞬时电流时,同一裸片上的器件应匹配。单片架构保证了温度和工艺偏差影响被充分抵消,引起电流检测信号延迟的寄生效应可忽略不计。单片架构的这些内在优点支持实时、精确的电流监测和保护。一旦过电流比较器跳闸,无论PWM输入如何,受影响的功率器件都会闭锁,FLTB引脚被拉低以向控制器报告故障,而反向器件则接通以将电感电流续流至零。当电流斜坡降至零后,驱动器又只接受PWM信号。该保护方案防止了功率级在正或负限流值周围持续抖动,避免器件产生热应力。图6显示了负载电流斜坡上升,直至触发正过电流保护。QNfednc

QNfednc

6.LTC7050的过流保护QNfednc

为了保证功率器件始终在安全工作区内工作,当输入电压超出OV阈值时,LTC7050的输入过压锁定特性会强制两个功率开关停止切换。如果功率MOSFET承载大电流且检测到OV,则反向功率器件会续流,如上所述。QNfednc

LTC7050系列为控制器(如LTC3884)或系统监视器提供了两个温度测量接口。TDIODE引脚连接到PN结二极管,以使用VBE方法或ΔVBE方法测量IC结温。TMON是专用引脚,以行业标准8mV/°C斜率报告芯片温度。标准DrMOS模块将模拟温度监控与其他故障警报结合在一个引脚上,LTC7050与此不同,其TMON仅在芯片温度至少为150°C时才被拉至VCC。在其他故障情况下,当FLTB开漏输出被拉低时,TMON将继续报告芯片温度。单片架构使TDIODE和TMON能够很好地反映功率器件的温度。在多相位系统中使用多个功率级时,TMON引脚可以连接起来以报告最高温度。QNfednc

将自举二极管和自举电容集成到封装中,可以消除对升压引脚的需求和自举驱动器意外短路的可能性。内部会持续监视自举驱动器的电压。如果电压低于欠压阈值,则关断顶部FET以避免导通损耗过大。QNfednc

结论QNfednc

LTC7050 SilentMOS单片式大电流智能功率驱动器是高频负载点应用的出色解决方案。对称布局的集成热环路带来了许多好处。外部元件更少,PCB尺寸更小,物料成本更低。低开关节点振铃增强了器件的可靠性。开关相关的损耗很低,故其在高开关频率下可实现高效率,并允许使用小电感;输出电容的尺寸也可以更小,因为闭环带宽更高。全面的监控和保护特性可在各种故障条件下保护昂贵的负载。QNfednc

关于ADI公司QNfednc

Analog Devices, Inc. (NASDAQ: ADI)在现代数字经济的中心发挥重要作用,凭借其种类丰富的模拟与混合信号、电源管理、RF、数字与传感技术,将现实世界的现象转化成有行动意义的洞察。ADI服务于全球12.5万家客户,在工业、通信、汽车与消费市场提供超过7.5万种产品。ADI公司总部位于马萨诸塞州威明顿市。更多信息请访问:http://www.analog.com/cnQNfednc

作者:ADI IC设计工程师Yingyi Yan,ADI IC设计工程师Eugene Cheung,ADI IC设计工程师Eric Gu,ADI IC设计工程师Tuan NguyenQNfednc

Yingyi Yan是电源产品高级IC设计工程师。他于2013年加入ADI公司,担任应用工程师。他负责为负载点应用、中间总线电源转换器和大电流集成功率级开发控制器。他拥有8项美国专利。他于2013年获得弗吉尼亚理工大学(弗吉尼亚州布莱克斯堡)电力电子系统中心颁发的博士学位。QNfednc

Eugene Cheung是一名模拟IC设计工程师,专门从事电源和高速电路设计。他于1994年获得布朗大学罗德岛分校电气工程学士学位,1997年获得加州大学伯克利分校电气工程与计算机科学硕士学位。他于2003年开始在凌力尔特公司(现为ADI公司的一部分)工作。QNfednc

Eric Gu是一名电源IC设计专业人士,在电力电子领域已从业20多年,设计并发布了十几种大批量电源管理IC产品。他还是DC-DC电源转换领域多项专利的作者或共同作者。Eric拥有加州大学戴维斯分校的学士学位和硕士学位。目前,Eric担任IC设计工程总监,管理着ADI公司的一个电源IC设计专家团队。QNfednc

Tuan Nguyen是ADI公司的一名产品评估工程师。他毕业于圣何塞州立大学,获电气工程学士学位。他于2007年加入ADI公司。QNfednc

责编:Demi
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 低电感电解电容器尺寸进一步缩小,同时提高工业自动化性 针对低内部电感进行优化的电解电容器有助于降低工业电源转换应用的成本,同时提高效率、性能和可靠性
  • Matter智能家居连接标准发布,仍有问题急需解决 国际物联网开放标准组织CSA联盟在荷兰阿姆斯特丹举行了Matter 1.0标准发布会,现场展示了其已经兼容Matter标准的设备,包括智能插座、门锁、照明、网关、芯片平台和相关应用程序。
  • AR眼镜中的显示技术:虚拟超脱想象之外,却基于现实 AR技术主要包括硬件、软件、内容和平台四个部分,在本篇文章中重点讨论的是用于主要硬件部分显示光机的光源。在进入正式内容之前,不妨先畅想一下,我们想要现实如电影中科幻的AR眼镜,应该具备什么特点?首先,在技术上要实现虚实的完全融合,其次要在外观上应与普通眼镜无异。而要达到这两点则包括了重量、人体工学、高效能等数十个因素,在这重重的困难中显示技术是关键的突破口。
  • 移动技术在仓库运营管理中的作用 市场研究机构Grand View Research 2021年市场分析预测,WMS在2021年到2028年期间的年增长率将达到15.3%,预计医疗保健、制造和零售企业将推动该增长。这些企业想方设法地精简运营流程,建立新的仓库来满足增加的客户需求、改变供应链的模式、加快产品运输、实现流程自动化等,以实现增产和满足不断增长的消费者需求。
  • Google AI在3个变革性领域的新成果 Google AI在3个变革性领域取得的成果。
  • Synchron脑控技术:用大脑去操控iPad 脑控技术一直是科技界的一个热门话题,人们希望可以通过意念来对各种设备进行操控,这不仅有助于使一些失去行动能力的患者恢复正常生活,在其他多个领域也有着广泛应用。
  • 从理论到实践详解混合波束赋形接收机动态范围 本文将讨论混合波束赋形系统的接收机动态范围分析,并比较一个32元件混合波束赋形测试平台的测量值和预测值。最初开发的混合波束赋形原型平台是为了在一个代表性架构中验证IC设计,并支持X波段(8GHz至12GHz)相控阵架构的快速原型设计。然而,随着表征的开始,很明显需要一种系统性预测性能指标的方法。ADI的目的是记述分析方法以及测量数据的比较,使工程师能够利用一个经表征的基准来构建类似但更大的系统。
  • 使用示波器进行基本抖动测量 抖动有两种主要类型:随机抖动和确定性抖动。随机抖动是无界的,即它的值随着测量持续时间的增加而不断增加。随机抖动与噪声等随机过程相关。确定性抖动则是有界的,其幅度随着观察时间的增加而受到限制。确定性抖动又可细分为周期性抖动、数据相关抖动和有界不相关抖动。
  • 调查:Wi-Fi 7将推动新的IIoT用例 无线宽带联盟的调查显示,Wi-Fi 7是投资新连接技术的关键领域。
  • 高端芯片受限,终端云化能否助其解套? 越来越多的厂商将视野投向终端云化,云手机、云PC、云PAD等试图将软件与硬件解耦,将计算资源从终端转移到云端,让低成本的设备实现高质量的体验。
  • 新的研究可提高钙钛矿/硅串联太阳能电池光吸收转化率 UNIST下属的一个研究小组成功地在一个钙钛矿-硅串联太阳能电池中实现了23.50%的功率转换效率(PEC),这种电池采用了一种特殊的纹理抗反射涂层(ARC)聚合物薄膜。据研究小组称,带有电弧膜的装置的PCE持续了120小时,保持了初始值的91%。
  • 小型传感器推动汽车安全突飞猛进 从安全带面世至今,汽车安全已经有了长足的进步。新的传感器和计算能力为所有人带来先进的保护功能,无论是驾驶员、乘客,还是行人和骑行者。现在,设计工程师的任务是快速高效地部署这些技术,以便更广泛地发挥其优势。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了