广告

电化学腐蚀制备新技术发表,“一步到位”制作电池电极

2022-12-12 16:18:14 天津大学 阅读:
据了解,天津大学“英才计划”特聘研究员吉科猛团队联合湖南大学谭勇文教授团队利用钴磷合金研发出了仅用一步即可制成电池电极的电化学腐蚀制备技术,该相关研究成果将于近日发表在国际期刊《先进材料》上。

近年来,随着智能手机、平板电脑、可穿戴设备等便携式电子设备以及新能源汽车的快速发展,市场对电池的需求越来越大,对其性能的要求也在逐渐提高。传统的电池电极制备工艺涉及打胶、配料、匀浆、涂布、辊压、烘烤等近十个步骤,过程繁琐复杂;还需要使用粘结剂、导电剂、集流体等诸多非活性材料,极大地增加了电池的制备成本并造成其产量无法满足市场需求,且实际能量密度也大打折扣。TNTednc

据了解,天津大学“英才计划”特聘研究员吉科猛团队联合湖南大学谭勇文教授团队利用钴磷合金研发出了仅用一步即可制成电池电极的电化学腐蚀制备技术,该相关研究成果将于近日发表在国际期刊《先进材料》上。TNTednc

新技术只需要将钴磷合金放入通电的食盐溶液中进行选择性腐蚀和电位调控氧化,便可一步制得电池电极。传统工艺制成的电极如石墨负极系由活性物质颗粒与非活性助剂混合后无序堆积而成,该电极则在组成上实现了氧化钴和磷化钴两种高活性钴基化合物的协同集成,并在结构上实现了三维网络孔状一体结构的构筑。得益于其一体化结构设计,该电极材料可以像芯片一样直接组装电池,而不需要像其它电极材料再进行配料、匀浆、涂布等繁琐步骤才能用于电池组装,大大简化了电池的制备工序。TNTednc

用该技术制成的钴基化合物电极的活性物质密度是传统石墨电极的2~3倍。活性物质密度越高,电极的单位体积储电量就越高。研究结果显示,新研发的钴基化合物电极储电量是同体积石墨电极储电量的5倍。该电极集成型组成的协同作用和一体化的结构设计也使其充电速率比传统石墨电极快了近10倍,满充满放时的循环寿命超过6000次,是市售锂电池循环寿命的2~4倍。TNTednc

吉科猛研究员介绍:“利用这种技术制备电极只需要两种原材料,一个是人们日常生活中吃的食盐,另一个也是工业生产技术非常成熟的金属合金,除此之外不再需要任何其他助剂和传统必须使用的集流体。由于食盐和合金都非常常见且价格低廉,因而我们研发的这种集成型一体化电极具有非常显著的成本优势,优异的储能性能也使其有着十分广阔的应用前景。” TNTednc

该电极制备技术的成功研发为新型集成型一体化储能电极的制备开辟了新的方向,为电极制备技术的发展提供了新的思路,拓展了工业合金的高附加值应用领域降低了制造成本,有助于提升电池产量和性能,并且极大的加速了电化学腐蚀技术的产业化进程。TNTednc

责编:Ricardo
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 基于微网格结构的弹性半导体新技术 近年来,柔性半导体正成为未来电子产品发展的新趋势。不同于传统刚性电子产品,柔性半导体产品能在一定范围的形变条件下正常工作,被广泛应用于各个领域。
  • 寄生效应为什么会产生意想不到的EMI滤波器谐振 这篇“电源设计小贴士”文章将探讨这些类型的寄生效应为什么会在电动汽车(EV)基于氮化镓(GaN)的车载充电器(OBC)中产生意想不到的EMI滤波器谐振。
  • Bosch Sensortec:通过嵌入式AI和MEMS传感器感知未来 11月10日,由全球电子技术领域知名媒体集团AspenCore主办的国际集成电路展览会暨研讨会(IIC Shenzhen 2022)的全球CEO峰会上,Bosch Sensortec的CEO Stefan Finkbeiner发表了“安全、健康和可持续:通过嵌入式AI和MEMS传感器感知未来”主题演讲。
  • 使用SiC MOSFET提高工业驱动器能效 在工业电力应用中,电子设计人员可以通过使用碳化硅基晶体管(SiC MOSFET)获得巨大的好处,与传统的IGBT等硅基解决方案相比,SiC MOSFET具有显著的效率提升、更小的散热器尺寸和更低的成本等优势。
  • 氮化镓功率器件在工业电机控制方面具有优势 氮化镓功率器件的优越电气特性,正在逐步淘汰复杂工业电机控制应用中的传统MOSFET和IGBT。
  • 量子计算机和 CMOS 半导体的发展回顾与未来预测 在未来的应用中,与量子比特之间的光通信可能也是必要的。在这种情况下,集成 CMOS电路还需要包括微米和纳米光学结构,例如光导和干涉仪。这些类型的光学功能已在室温 CMOS 器件上成功实现,在未来的量子计算应用中可能也需要在低温下实现同等级别的光通信功能。
  • 能量收集技术开启医疗应用新局 无论是用于治疗疾病、加速愈合过程或是协助医生追踪病人的状态,可穿戴和可植入医疗设备变得越来越普遍了。如果可以通过能量收集的方式供电,使用者不需要经历充电或更换电池的麻烦将会更有帮助……
  • 利用SiC应对开关速度挑战 电源转换器可以使用不同技术的宽禁带半导体,人们常常会比较这些半导体的开关速度和边沿速率。速度越快,支持的工作频率就越高,损耗就越低,电源转换器磁性元件就越小,听上去很美好。而在真实世界中,更快的dV/dt和di/dt也会成为一个问题,使您难以满足EMI规格要求…
  • 增强型GaN HEMT的漏极电流特性 增强型GaN基高电子迁移率晶体管(HEMT)已经采用两种不同的结构开发出来。这两种增强型结构是金属-绝缘层-半导体(MIS)结构和栅极注入晶体管(GIT)结构。MIS结构具有受电压驱动的小栅极漏电流,而GIT则具有脊形结构和高阈值电压。两者也都有一些缺点。MIS对栅极干扰的可靠性较低,阈值电压较低,而GIT的栅极开关速度较慢,栅极漏电流较大。
  • 利用GaN技术在狭窄的环境中保持“冷静” 虽然GaN器件可实现更高的功率密度,但为了实现高可靠性的适销对路的适配器设计,仍有一些系统级问题需要解决。这些问题以散热设计和EMI合规性为中心。适配器内的电子电路必须要在放置它们的狭小空间中保持冷(表现出低温升)静(低发射噪声)。本文将着眼于实现这些目标的技术。
  • 美的威灵电机:两轮车电动力系统技术发展趋势与解决方案 日前,在AspenCore举办的“2022国际AIoT生态发展大会”的“智慧两轮车分论坛”上,广东威灵电机制造有限公司两轮车项目经理刘海量分享了“两轮车电动力系统技术发展趋势与解决方案”主题演讲。
  • 25kW SiC直流快充设计指南 (第八部分):散热管理 在本系列的前几篇文章中,我们介绍了基于onsemi丰富的SiC功率模块和其他功率器件开发的25kW EV快充系统。在这一章,我们来看看其中的散热管理部分是如何提高效率和可靠性,同时防止系统过早失效的。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了