广告

确保SiC验证测试准确度,有效测量碳化硅功率电子系统中的信号

2021-07-13 泰克科技 阅读:
时域测量和开关损耗计算的准确度,受到用来采集测量数据的探头的准确度、带宽和时延的影响。尽管这一讨论的重点是示波器探头之间的差异,但具体实现方式( 如布局、寄生信号和耦合) 也在测量准确度中发挥着关键作用。需要测量栅极电压、漏极电压、电流三个重要参数,才能正确验证采用SiC 技术的功率模块。

SiC 正在被应用到功率更高、电压更高的设计中,比如电动汽车(EV) 的马达驱动器、电动汽车快速充电桩、车载和非车载充电器、风能和太阳能逆变器和工控电源。xM2ednc

功率系统设计人员在转向SiC 时,会面临一些问题的挑战:xM2ednc

  • 测试设备能否准确地测量 SiC 系统的快速开关动态?
  • 怎样才能准确地优化门驱动性能和空转时间?
  • 共模瞬态信号是否影响测量准确度?
  • 我看到的振铃是真的吗?还是探头响应结果?

对工程师来说,解决这些挑战非常难。还有一点,工程师需要准确地查看所有这些信号,才能及时做出正确的设计决策。提高设计裕量和过度设计,只会推动成本上升,让性能下降。使用适当的测量设备才是解决问题的关键。xM2ednc

时域测量和开关损耗计算的准确度,受到用来采集测量数据的探头的准确度、带宽和时延的影响。尽管这一讨论的重点是示波器探头之间的差异,但具体实现方式( 如布局、寄生信号和耦合) 也在测量准确度中发挥着关键作用。需要测量栅极电压、漏极电压、电流三个重要参数,才能正确验证采用SiC 技术的功率模块。xM2ednc

栅极电压测量xM2ednc

测量SiC 功率器件的栅极电压极具挑战性,因为它是一种低压信号(~20 Vpp),参考的节点相对于示波器接地可能会有高DC 偏置和高dv/dt。此外,最大的dv/dt 发生在开关事件过程中,这是测量栅极信号时最关心的时间。即使是器件源极连接到接地的拓扑中,电路接地和示波器接地之间的寄生阻抗仍会由于快速瞬态信号而导致错误读数。这要求测量设备从接地反耦,要有非常大的共模抑制比。这种栅极电压测量在传统上采用标准差分探头(图1a),而最新的光隔离探头,如IsoVu 探测系统(图1b),则可以大大提高这种测量的准确度。xM2ednc

xM2ednc

图1. a)差分电压探头实例:泰克差分探头THDP0200 探头及附件xM2ednc

b)泰克lsoVu TIVP1 光隔离探头(TIVPMX10X, ±50 V 传感器尖端)。xM2ednc

图2 比较了标准差分探头与光隔离探头进行的高侧栅极电压测量。不管是关闭还是打开,在器件栅极经过阈值区域后,栅极上都可以看到高频振铃。由于栅极和功率环路之间的耦合,预计会出现部分振铃。但是,在差分探头中,振铃的幅度明显要高于光隔离探头测得的值。这可能是由于参考电压变化在探头内部引起了共模电流及标准差分探头的假信号。虽然图2 中差分探头测得的波形似乎通过了器件的最大栅极电压,但光隔离探头的测量准确度要更高,明确显示器件位于规范范围内。xM2ednc

xM2ednc

2. 差分探头( 蓝色轨迹) 与IsoVu 光隔离探头( 黄色轨迹) 对比。xM2ednc

使用标准差分探头进行栅极电压测量的应用工程师要注意,因为其可能区分不了这里显示的探头和测量系统假信号与器件额定值实际违规。这种测量假信号可能会导致设计人员提高栅极电阻,降慢开关瞬态信号,减少振铃。但是,这不一定会提高SiC 器件的损耗。为此,使用的测量系统一定要能准确地反映器件的实际动态,以正确设计系统,优化性能。xM2ednc

漏极电压测量xM2ednc

在功率电子系统中,差分探头和参考地电平探头是两种常用的电压测量方法。差分探头是一种流行的选择,因为它可以毫无问题地添加到电路的任意节点中。而参考地电平探头要注意实现方式,因为其屏蔽引脚连接到示波器的接地上。参考地电平测量实现不正确,一般会导致探头参考上出现小的接地电流,明显降低测量的准确度。这种效应在SiC 设计中会更明显,因为高dv/dt会给示波器探头参考地电平引入寄生电流,导致测量误差。在更严重的情况下( 参考地电平屏蔽层连接到功率信号时),大电流会流过接地,损坏探头或示波器。在最坏的情况下,从仪器到接地的连接失败会导致示波器的外部金属壳浮动到总线电压,给操作人员的人身安全带来严重威胁。xM2ednc

在使用参考地电平CVR 时,接地问题变得更加关键。如图3 所示,在结合使用参考地电平探头与CVR 时,有可能通过示波器屏蔽路径绕过CVR。这会导致整个器件电流流过示波器,可能会损坏电压探头或示波器,也会带来重大的人身安全隐患。一般来说,推荐使用差分探头进行器件漏极到源极测量。xM2ednc

xM2ednc

3. 在两只参考地电平的探头连接到不同电压的参考平面时,器件电流会旁路CVR,流经地线和示波器。这会导致测量错误,并可能会导致设备损坏。xM2ednc

电流测量xM2ednc

在功率电子系统中, 电流查看电阻器(CVR) 和Rogowski 线圈(图4 a 和b)是两种常用的电流测量方法。Rogowski 线圈是一种流行的选择,因为它可以简便地添加到电路中,是一种非侵入式测量,但这类探头通常会有明显的带宽限制,不适合用于SiC。另一方面,CVRs 拥有极高的带宽,可以进行准确的电流测量。遗憾的是,串联晶体管时需要添加额外的器件要求谨慎规划PCB 布线,因为添加CVR 一般会提高电路中的寄生电感。xM2ednc

图4 比较了Rogowski 线圈和CVR 测量的典型SiC 硬开关事件。Rogowski 线圈的带宽明显低得多,导致人为抑制试验波形中存在的振铃。更重要的是,它会人为抑制初始过冲,对测量的di/dt 发出预警。xM2ednc

xM2ednc

4. CVR 与Rogowski 电流探头,CAB016M12FM3 (TJ = 25℃ , RG = 6.8, Vos= 600 V,Is = 100A)。xM2ednc

xM2ednc

5. CVR 与Rogowski 电流探头, CAB011M12FM3 (TJ= 150℃ , RG = 1W), VDS= 600 V, IS = 100A)。xM2ednc

图5 在更加激进的开关条件下比较了不同的探头,比较中突出了两个关心的点。第一,在关闭时,Rogowski 线圈不能充分捕获电流波形的形状,漏掉了轻微的膝部,会降低表面上的开关损耗。此外,打开时预测的di/dt 下降还会导致预测的开关损耗降慢。Rogowski 线圈带宽下降的累积效应,是估算的开关损耗降低。xM2ednc

图6 直接比较了Wolfspeed WolfPACK™CAB011Ml2FM3 在漏极电流中估算的开关损耗。如上所述,Rogowski 线圈在预测时一直低估了电路的开关损耗,给人感觉电路损耗过于乐观。由于不一致与探头带宽限制有关,所以它取决于晶体管的边沿速率,在更激进的栅极电阻时会进一步提高。对低速开关技术( 如IGBTs),计量差异可以忽略不计。xM2ednc

xM2ednc

6. 使用不同探头(CAB011M12FM3, TJ = 150℃ , RG= 1W) 估算开关损耗(Eoff + Eon)。xM2ednc

校正探头时延xM2ednc

使用的探头除了要有充足的带宽和噪声抑制功能外,还必须进行时延校正,保证电压信号和电流信号的时延匹配。电压探头和电流探头时延不匹配哪怕只有1-2ns,就会导致30% 及以上的Eon 和Eoff 测量误差。正确地进行时延校正对SiC 系统中固有的快速开关瞬态信号至关重要。xM2ednc

在时延校正前,必要时要自动清零和校准探头,消除任何偏置或定标误差。通过使用对称连接把两只探头连接到一台函数发生器上,可以校正电压探头VDS 和VGS 的时延。使用函数发生器生成的方波,检查信号的振铃和下降沿是否对齐。可以使用图7 所示的电路板,简便地连接函数发生器和任何电压探头。函数发生器信号连接到电路板中心,电路板边缘周围为示波器探头连接提供了各种选项,可以适应各种探头接口。xM2ednc

xM2ednc

7. 功率测量时延校正和校准夹具(067-1686-00)7,可以补偿电压探头和电流探头之间的定时差。xM2ednc

有多种方法校正VDS 和ID 探头时延,保证正确测量开关损耗。所有方法背后的原理都一样,即要有一条测试电路,如图7所示的夹具,尽可能接近纯电阻电路,这样电压波形和电流波形就能对准。然后可以使用这条测试电路校正电流探头时延,与电压探头响应相匹配。xM2ednc

SiC 电路级验证使用的探头连接技术xM2ednc

在执行栅极测量时,要认真考虑连接选项,确保从功率转换模块中捕获干净的信号。鉴于这是在较高电压下进行的未接地测量,因此连接非常关键。有两种主要连接方式:MMCX 为器件连接提供了一种模块化预制件方法,方针则有一个连接器可以转接到不同的PC 电路板实现方案。xM2ednc

MMCX 式传感器尖端电缆高性能,高达250 V 应用)xM2ednc

MMCX 连接器插到测试点附近时,IsoVu Gen 2 测量系统可以实现最好的性能。图8 a 和 b 显示了两种不同的应用。这些MMCX连接器提供了高信号保真度,固体金属机身和黄金触点提供了屏蔽精良的信号路径。配对的MMCX 接口提供了卡接连接,拥有正向固定力,实现稳定的免提连接能力。分离力为高压应用提供了安全稳定的连接。MMCX连接器分成多种配置,可以转接到许多应用,即使电路板中没有设计这种连接器也无妨。xM2ednc

xM2ednc

图8. MMCX 连接器 (a)实例1 (b)实例2xM2ednc

方针到MMCX 转接头xM2ednc

在不能使用MMCX 连接器时,可以转接尖端电缆,适应行业标准方针。泰克提供了探头转接头,把传感器尖端电缆连接到电路板的方针上。泰克提供了两种不同间距的转接头:MMCX 到0.1 英寸(2.54 毫米)转接头和MMCX 到0.062 英寸(1.57 毫米) 转接头。转接头有一个MMCX 插座,用来连接IsoVu尖端电缆。转接头另一端有一个中心引脚插座,转接头外部周围有4 个公共( 屏蔽) 插座。转接头上的凹槽可以用来固定屏蔽插座。在探头尖端转接头靠近电路板时,可以实现最佳的电气性能。xM2ednc

方针式传感器尖端电缆xM2ednc

TIVP 系列(IsoVu Gen 2) 产品还包括方针式传感器尖端电缆,可以实现更高的输入差分电压功能。这些尖端接口不仅连接简便,而且连接牢固,在高压环境中可以安全实现免提操作。方针式传感器尖端电缆分成两种:0.100˝ (2.54 mm) 间距,可以用于高达600V 的应用;0.200˝ (5.08 mm) 间距, 可以用于高达2500 V 的应用。xM2ednc

非预计的测试点xM2ednc

在理想情况下,测试点会提前规划,并整合到栅极驱动器或评测电路板中,如Wolfspeed KIT-CRDCIL12N-FMC Wolfpack 评测套件。在这种场景下,MMCX 连接器会提供最好的性能,如果关心的信号落在300Vpk 电压额定值范围内,推荐使用MMCX连接器。xM2ednc

当然,我们不能一直预测每个可能的测试点。在具体情况要求添加非预计的测试点时(如图9 所示),应根据以下指引确保最高的测量准确度:xM2ednc

在电压额定值允许时使用MMCX 连接器。xM2ednc

连接器位置要尽可能安全地靠近IC 或元器件。xM2ednc

同样,任何要求的飞线要尽可能短或不用飞线。xM2ednc

使用热熔胶、聚酰亚胺胶带或类似东西机械加强连接器。xM2ednc

在实例中,电路板组装后在VGS 测试点中添加了一个方针头部。测试点使用非导电的热熔胶加强,以增加强度。xM2ednc

xM2ednc

9. 经VGS 节点焊接方针头部,测量高侧栅极驱动信号。xM2ednc

小结xM2ednc

总之,宽带隙半导体技术将在功率转换和能效的未来发展中发挥巨大的作用。与同等硅产品相比,SiC 开关更小,更快,效率更高。这些技术广泛用于各种应用中,从电动汽车到光伏材料。因此,使用正确的工具测试这些技术变得非常重要,这样设计人员才能正确设计、开发及整合到最终应用中。xM2ednc

泰克系列解决方案发挥着关键作用。IsoVu™ 隔离探测系统提供了浮动的非参考地电平的差分探测体验,特别适合栅极测量需求,其带宽从200 MHz 到1 GHz,拥有各种探测尖端,在需要时可以衰减支持电压更高的信号。5 系MSO 示波器是高分辨率(12 位) 示波器,特别适合测试存在高得多的电压时的小电压;8 条通道可以同时查看更多的定时信号,优化性能,考察大量信号之间的关联性。5-PWR 软件旨在5 系MSO 示波器上运行自动的、准确的、可重复的功率完整性测量,包括实际工作条件下的开关损耗、传导损耗、RDS_ON、磁性损耗、SOA 等等。xM2ednc

关于泰克科技xM2ednc

泰克公司总部位于美国俄勒冈州毕佛顿市,致力提供创新、精确、操作简便的测试、测量和监测解决方案,解决各种问题,释放洞察力,推动创新能力。70多年来,泰克一直走在数字时代前沿。欢迎加入我们的创新之旅,敬请登录:tek.com.cnxM2ednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 自耦变压器和风扇 由于我的SPICE版本中并不包括自耦变压器,因此必须设计一个使用两个1:1匝数比变压器的模型...
  • Matter的核心:定义下一阶段智能家居的互操作性和无线技 在当今完全互联的世界里,使用各种智能家居的生活环境意味着需要同时与多种无线协议进行交互。照明系统、供暖和制冷系统、安全系统、娱乐系统——现在家庭生活的方方面面几乎都可以通过无线方式进行增强和控制。尽管无线技术的优势众多,但如今家庭中的无线连接并不是一帆风顺的。即便对于深谙各种先进技术的智能家居爱好人士来说,家庭网络中处理各种不兼容的无线协议也构成了挑战。
  • 学子专区—ADALM2000实验:跨阻放大器输入级 本次实验旨在研究简单跨阻放大器的输入级配置。
  • 用TinyML开始设计——开发评估套件 本文中展示的开发套件和评估板得到一些流行的机器学习库和用于 TinyML 工作流程资源的支持,包括用于微控制器的 Google TensorFlow Lite 和 Edge Impulse,因而它们能够成为您第一个项目的理想起点。
  • 新的10BASE-T1L标准有哪些变化? 本文介绍了10BASE-T1L的基础知识,并展示了与选择各种应用适用连接器相关的产品。通过数据线实现各种互连设备的电力传输在10BASE-T1L中也发挥着至关重要的作用。
  • 555 定时器 IC 50 岁了,为何它能经久不衰? 自 1972 年推出以来,555 定时器 IC一直在市场上广泛使用。在 IC 技术编年史中,那是恐龙时代。这种基本未改变的 IC 已经生产了很长时间,目前仍有十几家厂商提供这种芯片。我找不到具体的数字,但我怀疑每年仍有数百万人在使用传统和新设计。那么也许是时候让 555 退役并在那些传统的晶圆厂队列中为其他更新的模拟 IC 腾出空间了?
  • 汽车上的NFC:看NFC Forum CR13 如何实现车门无线钥 13版NFC证书将确保汽车厂商能够提供可互操作的NFC钥匙系统。本文将探讨一下13版NFC证书给汽车行业及其消费者带来哪些影响。
  • 巧用0Ω电阻设计PCB板 许多硬件初学者看到PCB板上用到0Ω电阻时,往往就会一脸懵圈,他们经常会问:既然这玩意儿里面啥也没有,干嘛还要用它?其实,0Ω电阻的用处可大了,如果用好它,可以极大地方便PCB板的设计和调试。
  • 六边形截面的EMI隔离罩设计 采用截面为六边形设计的蜂巢状隔离罩有助于形成很大的通风面积,同时又能够有效的防止EMI/RFI…
  • 更高、更快伴生更强要求,迎接DDR5内存验证和调试挑战 DDR5带来了一系列全新的挑战,在实现和检验时必须克服这些挑战。更高的数据速率会扩大要求的测试设备带宽,要求新的流程来测量之前的方法测量不了的抖动,要求接收机均衡形式的全新DDR单元,甚至要引入新的采用夹具的标准化测试,这些都是DDR5验证面临的重大挑战。
  • 如何利用现代嵌入式开发工具中的堆栈保护功能 在开发以MCU为核心的嵌入式系统时,当软件程序向预设的数据结构(通常是一个固定长度的缓冲区)之外的程序调用堆栈的内存地址范围写入数据时,就会发生堆栈缓冲区溢出。这几乎必然会损坏附近的数据,甚至会改变返回函数。
  • 2021最受欢迎技术文章排行TOP 10:小知识 在过去的2021年里,是哪些文章吸引了大家的关注点赞转发三连呢?EDN小编从几个热门类别中,选出最热门的几篇技术文章分享给大家。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了