广告

【技术大咖测试笔记系列】之四:使用数字万用表测量电源瞬态恢复时间

2021-08-26 泰克科技技术大咖 Josh Brown 阅读:
简单地说,瞬态恢复时间是施加负载后电源恢复到设定电平所需的时间长度。不设计电源的人一般会想当然,我们在工作中不管用的是哪种电路,可能只有在电源性能劣化到影响工作时才会注意到它。电源和人有点儿像,如果你问的问题比他知道的多,那么他可能会达不到你的预期。

简单地说,瞬态恢复时间是施加负载后电源恢复到设定电平所需的时间长度。不设计电源的人一般会想当然,我们在工作中不管用的是哪种电路,可能只有在电源性能劣化到影响工作时才会注意到它。电源和人有点儿像,如果你问的问题比他知道的多,那么他可能会达不到你的预期。HArednc

我们用一个类比来帮助说明考虑电源压力的重要性。如果有人投给你一个棒球,告诉你抓住时球要保持在同一高度,前探或后缩几英寸(或几厘米),在一秒内完成。棒球(负载)相对较轻,在抓住它时,您的手几乎不会移动。(当然前提是你要有一个精准的投手。)HArednc

现在想象一下,有人投给你一个保龄球,对你的反应提出同样的限制。你的手不仅要移动,你的身体也要移动进行配合助力,因为重量变了。球是否导致你保持的高度相对于目标高度发生变化?变化量有多大?你完全抓住并握紧球了吗?如果不能保持在一定的高度容限内,你能在允许的1秒间隔内稳定高度吗?很明显,这个挑战要大得多(除非你是一名NFL前锋)。类似的,如果电源上放置的负载超过其处理能力,那么它会很难满足你的要求。HArednc

那么怎样才知道自己跑得远不远呢?这时使用DMM全面表征瞬态恢复特点就成了关键。HArednc

在深入具体细节前,我们先讨论一下开关频率,因为这有助于确定你选择哪种仪器来评估有问题的行为。尽管线性电源和开关式电源都受到瞬态恢复时间指标影响,但开关式电源以预定频率工作,自然有更多的噪声,信号活动要更杂散。开关式电源使用的频率范围一般为10 kHz ~ 1 MHz。由于示波器的采样率高,提供了优秀的可视工具,因此示波器特别适合评估瞬态恢复时间,其中使用电平触发捕获事件,使用屏幕光标进行数学和测量分析。HArednc

你可能还会考虑拥有高速采样功能的数字万用表,工作台上可能已经有这种仪器。某些DMM型号很多年前就能够采样高达50 kHz,较新的型号则能够支持高达1 MHz。随着速度而来的是有更多的高速采样机会,因为其测量灵敏度要高于大多数示波器。HArednc

为说明怎样测量瞬态恢复时间,我们使用德仪公司生产的LM25088MH-1EVL评测电路板,其能够从高达36V的输入电源提供5V电压及高达7A电流。在略加改动后,我们把它重新配置成以25 kHz频率开关。我们使用Keithley 2230A-30-3三通道DC电源其中两条通道,提供10V输入信号(最高6A 电流)为评测电路板供电。我们还使用Keithley 2380-500-15电子负载吸收一定量的电流。在这种情况下,我们想把LM25088MH推到其7A极限,看它如何反应。我们使用DMM6500,先评估电子负载吸收大电流时的电压响应,然后再查看电流响应。HArednc

为评估瞬态恢复电压,我们把仪器连接如下:HArednc

HArednc

在把2230A电源设置成在两条输出通道上输出10V @ 3A (以确保为电源转换提供足够的电流)后,我们把2380电子负载设置成吸收7A的恒定电流。我们打开2230A的输出,同时关闭2380。我们把DMM6500配置成数字化电压,把采样率设置成1 MS/s,数量为10k读数,然后轻触Set Up Trigger按钮,出现波形捕获选项,从Source Event选项中选择Analog Edge。HArednc

HArednc

由于我们预计在应用负载时电压会有一定下降,所以我们把电平设置成4.925 V,斜率设置成下降沿。选择之后,我们可以使用Position选项在图表上调节波形的水平表示。为启动DMM6500开始监测事件,我们轻触屏幕左上角的CONT信号器,这时会出现一个下拉菜单,其中有多个触发选面,选择Initiate Trigger Model。HArednc

HArednc

最后,我们打开2380电子负载,应用有效步进功能,吸收7A电流。DMM6500将捕获采样的波形,显示在Graph图表一栏中。这会显示对LM25088MH开关式电源的输出应用负载时的瞬态响应。轻触DMM6500屏幕,放大感兴趣的区域,可以进一步进行评估,打开光标,得到信号电平(y轴信息)随时间(x轴信息)变化指标。我们可以看到,开关式电源在大约1.5毫秒后稳定。更有意思的是应用负载后产生大的暂降,驱动输出电压最低达到3.466 V。HArednc

HArednc

与应用负载时的瞬态恢复同样重要的,是在移除相同的负载时会发生什么情况。为捕获这种情况,我们轻触DMM6500上的Trigger标签,把电平变成5.1 V,斜率变成Rising上升沿。可以像之前一样(使用下拉菜单选项),或按仪器前面板DMM显示屏左面的TRIGGER键,触发DMM。然后关闭2380电子负载,可以在DMM6500图表上看到开关式电源的恢复波形。HArednc

HArednc

我们不用在显示屏上同时启用水平光标和垂直光标,而是只使用垂直光标,滑动屏幕底部的信息条,出现VCursor Stats。这会提供两个竖条之间数据点的基本统计信息。因此,我们不需启用和调节水平光标,就可以确定移除负载时开关式电源的峰值是6.953 V。我们可以把右手光标设置到输出变平坦前小的暂降发生的地方,发现恢复响应时间大约是125毫秒。我们也可以放大峰值点区域,更好地查看电压信号的行为方式。HArednc

HArednc

现在我们把注意力转向电流信号,使用同一条电路,但DMM6500与2380电子负载串联。注意记录,因为我们处理的是很大的电流(7 A),我们需要使用DMM背面提供的10 A电流输入连接.HArednc

HArednc

触发选项设置与之前类似,但现在我们在预计的7 A信号的中点触发,斜率仍设置成Rising上升沿。HArednc

HArednc

我们再次触发DMM6500(通过下拉菜单),然后打开2380电子负载 – DMM对波形事件的响应没问题。在移除负载时重复这个过程,我们也使用屏幕光标迅速分析数据,显示电流暂降到-2.5 A。HArednc

HArednc

尽管我们的注意力一直放在高功率波形捕获上,但我们仍要注意数字万用表提供的电流灵敏度优势。当前设计的许多器件都必须尽可能节能,以延长电池续航时间。LM25088MH评测电路板的这条开关电路可以集成到低功率无线设计中,在跳变到不同状态(睡眠、待机、传感、处理等)时,必须评估各个元件吸收的弱电流。捕获低电流波形事件的过程与上面列出的过程相同,但更低的范围使得用户可以监测弱电流。例如,如果我们把负载设置成5 mA,使用DMM6500上的10 mA量程,那么我们可以查看微安级读数。HArednc

HArednc

希望这篇笔记能够让你了解瞬态恢复测量,并感受吉时利的部分产品。吉时利拥有500多种产品,可以用来提供、测量、连接、控制或传送直流(DC)或脉冲式电信号。如需了解更多信息并保持电源高效运行,敬请访问:https://www.tek.com/keithley。HArednc

责编:DemiHArednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 自耦变压器和风扇 由于我的SPICE版本中并不包括自耦变压器,因此必须设计一个使用两个1:1匝数比变压器的模型...
  • Matter的核心:定义下一阶段智能家居的互操作性和无线技 在当今完全互联的世界里,使用各种智能家居的生活环境意味着需要同时与多种无线协议进行交互。照明系统、供暖和制冷系统、安全系统、娱乐系统——现在家庭生活的方方面面几乎都可以通过无线方式进行增强和控制。尽管无线技术的优势众多,但如今家庭中的无线连接并不是一帆风顺的。即便对于深谙各种先进技术的智能家居爱好人士来说,家庭网络中处理各种不兼容的无线协议也构成了挑战。
  • 学子专区—ADALM2000实验:跨阻放大器输入级 本次实验旨在研究简单跨阻放大器的输入级配置。
  • 用TinyML开始设计——开发评估套件 本文中展示的开发套件和评估板得到一些流行的机器学习库和用于 TinyML 工作流程资源的支持,包括用于微控制器的 Google TensorFlow Lite 和 Edge Impulse,因而它们能够成为您第一个项目的理想起点。
  • 自耦变压器SPICE建模 自耦变压器又称为单绕组变压器,可分升压变压器及降压变压器;它是一种只有一组线圈的变压器,其中一个线圈作为另一线圈的一部份...
  • 新的10BASE-T1L标准有哪些变化? 本文介绍了10BASE-T1L的基础知识,并展示了与选择各种应用适用连接器相关的产品。通过数据线实现各种互连设备的电力传输在10BASE-T1L中也发挥着至关重要的作用。
  • 555 定时器 IC 50 岁了,为何它能经久不衰? 自 1972 年推出以来,555 定时器 IC一直在市场上广泛使用。在 IC 技术编年史中,那是恐龙时代。这种基本未改变的 IC 已经生产了很长时间,目前仍有十几家厂商提供这种芯片。我找不到具体的数字,但我怀疑每年仍有数百万人在使用传统和新设计。那么也许是时候让 555 退役并在那些传统的晶圆厂队列中为其他更新的模拟 IC 腾出空间了?
  • 汽车上的NFC:看NFC Forum CR13 如何实现车门无线钥 13版NFC证书将确保汽车厂商能够提供可互操作的NFC钥匙系统。本文将探讨一下13版NFC证书给汽车行业及其消费者带来哪些影响。
  • 如何轻松选择合适的频率产生器件 何种频率产生器件适合我的应用?了解频率产生器件的性能特征对于为目标使用场景确定正确的解决方案至关重要。这是一个快速指南,旨在帮助RF系统工程师熟悉整个选择流程。
  • 巧用0Ω电阻设计PCB板 许多硬件初学者看到PCB板上用到0Ω电阻时,往往就会一脸懵圈,他们经常会问:既然这玩意儿里面啥也没有,干嘛还要用它?其实,0Ω电阻的用处可大了,如果用好它,可以极大地方便PCB板的设计和调试。
  • 六边形截面的EMI隔离罩设计 采用截面为六边形设计的蜂巢状隔离罩有助于形成很大的通风面积,同时又能够有效的防止EMI/RFI…
  • 更高、更快伴生更强要求,迎接DDR5内存验证和调试挑战 DDR5带来了一系列全新的挑战,在实现和检验时必须克服这些挑战。更高的数据速率会扩大要求的测试设备带宽,要求新的流程来测量之前的方法测量不了的抖动,要求接收机均衡形式的全新DDR单元,甚至要引入新的采用夹具的标准化测试,这些都是DDR5验证面临的重大挑战。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了