广告

英特尔公布其加速摩尔定律计划:10倍的密度改进和后硅晶体管时代

2021-12-13 15:58:45 阅读:
在 IEDM 2021上,英特尔发布了一系列新公告,将推动和加速摩尔定律在 2025 年之后实现。这些技术包括整合量子物理突破、新封装和晶体管技术等。

在对摩尔定律的不懈追求中,英特尔推出了关键的封装、晶体管和量子物理突破,这些突破对于推进和加速计算进入下一个十年至关重要。在 2021 年IEEE 国际电子设备会议(IEDM) 上,英特尔概述了其实现混合键合封装互连密度提高 10 倍以上、晶体管缩放面积提高 30% 至 50%、新电源和存储器技术的重大突破以及新的物理学中的概念可能有一天会彻底改变计算。Tulednc

英特尔高级研究员兼组件研究部总经理Robert Chau表示:“在英特尔,推进摩尔定律所需的研究和创新从未停止。我们的组件研究小组将在 IEDM 2021 上分享关键研究突破,带来革命性的工艺和封装技术,以满足我们行业和社会对强大计算的永不满足的需求。这是我们最优秀的科学家和工程师不懈努力的结果。为了延续摩尔定律,他们继续走在创新的最前沿。”Tulednc

Tulednc

Tulednc

Tulednc

Tulednc

Tulednc

Tulednc

 Tulednc

重要性: 摩尔定律一直在跟踪计算创新,以满足从大型机到移动电话的每一代技术的需求。随着我们进入一个拥有无限数据和人工智能的计算新时代,这种演变今天仍在继续。Tulednc

持续创新是摩尔定律的基石。Tulednc

英特尔的组件研究小组致力于在三个关键领域进行创新:用于提供更多晶体管的基本缩放技术;用于功率和内存增益的新硅功能;探索物理学中的新概念,以彻底改变世界的计算方式。许多突破先前摩尔定律障碍并出现在今天产品中的创新都始于组件研究的工作——包括应变硅、Hi-K 金属栅极、FinFET 晶体管、RibbonFET,以及包括 EMIB 和 Foveros Direct 在内的封装创新。Tulednc

在 IEDM 2021 上揭示的突破表明,英特尔有望通过其三个探路领域,在 2025 年之后继续推动摩尔定律的进步和优势。Tulednc

1.英特尔正在对基本缩放技术进行重要研究,以在未来产品中提供更多晶体管:Tulednc

该公司的研究人员概述了针对混合键合互连的设计、工艺和组装挑战的解决方案,预计封装互连密度提高 10 倍以上。在 7 月的 Intel Accelerated 活动中,Intel 宣布了推出 Foveros Direct 的计划,支持亚 10 微米的凸点间距,为 3D 堆叠的互连密度提供一个数量级的增加。为了使生态系统能够从先进封装中获益,英特尔还呼吁建立新的行业标准和测试程序,以实现混合键合小芯片生态系统。Tulednc

Tulednc

Tulednc

Tulednc

Tulednc

Tulednc

Tulednc

超越其全栅极 RibbonFET,英特尔正在通过堆叠多个 (CMOS) 晶体管的方法掌握即将到来的后 FinFET 时代,该方法旨在实现最大 30% 至 50% 的逻辑缩放改进,以推动摩尔定律的不断发展通过每平方毫米安装更多的晶体管。Tulednc

英特尔还通过前瞻性研究为摩尔定律进入埃时代铺平了道路,该研究展示了如何使用只有几个原子厚的新型材料来制造克服传统硅通道限制的晶体管,从而使每个芯片面积上增加数百万个晶体管为未来十年更强大的计算。Tulednc

Tulednc

2.英特尔正在为芯片带来新功能:Tulednc

通过在 300 毫米晶圆上实现基于 GaN 的电源开关与基于硅的 CMOS 的全球首次集成,正在推进更高效的电源技术。这为向 CPU 提供低损耗、高速供电奠定了基础,同时减少了主板组件和空间。Tulednc

另一个进步是英特尔行业领先的低延迟读/写功能,它使用新型铁电材料实现下一代嵌入式 DRAM 技术,该技术可以提供更大的内存资源,以解决从游戏到人工智能的计算应用程序日益复杂的问题。Tulednc

Tulednc

Tulednc

Tulednc

Tulednc

Tulednc

Tulednc

3.英特尔正在通过基于硅晶体管的量子计算以及全新的开关来追求巨大的性能,以通过新型室温设备进行大规模节能计算。未来,这些启示可能会通过使用全新的物理学概念来取代经典的 MOSFET 晶体管:Tulednc

在 IEDM 2021 上,英特尔展示了世界上第一个在室温下实现磁电自旋轨道 (MESO) 逻辑器件的实验性实现,这展示了基于开关纳米级磁铁的新型晶体管的潜在可制造性。Tulednc

英特尔和 IMEC 正在自旋电子材料研究方面取得进展,以使器件集成研究接近实现全功能自旋扭矩器件。Tulednc

英特尔还展示了用于实现与 CMOS 制造兼容的可扩展量子计算的完整 300 毫米量子位工艺流程,并确定了未来研究的下一步。Tulednc

参考链接:https://wccftech.comTulednc

Demi Xia编译Tulednc

责编:DemiTulednc

  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 用水泥和炭黑制造储能超级电容器 一项新的研究表明,人类最普遍的两种历史材料,水泥和炭黑(类似于非常细的木炭),可能会成为新型低成本储能系统的基础。该技术可以在可再生能源供应出现波动的情况下使能源网络保持稳定,从而促进太阳能、风能和潮汐能等可再生能源的使用。
  • 一种用于电路板回收的新基材:遇水能溶 英国的Jiva Materials公司开发了一种新型的PCB基材Soluboard,这种基材是由天然纤维包裹在一种无卤的聚合物中制成的,与行业内经常使用的FR-4基材不同,这种材料只要在90摄氏度左右的热水中浸泡30分钟,就可以分层溶解···
  • 美国公司声称发现室温超导材料,被授予了高于室温的第二 位于美国佛罗伦萨州的Taj Quantum的公司在社交媒体宣布,被授予了高于室温的第二类超导体专利。据称,这种独特的 II 型超导体(专利号:17249094)可在较宽的温度范围内工作,包括远高于室温的温度,从约 -100° F (-73° C) 到约 302° F (150° C) - 这是一种特性这在超导体世界中并不常见。
  • 俄罗斯“贝加尔湖”基准测试对比英特尔和华为芯片,惨败 俄罗斯服务器处理器 Baikal-S 的开发人员将其性能与美国和中国的同类芯片进行了比较。涉及六个流行指标。
  • 英伟达惨遭背刺,这个SDK让AMD平台也能运行CUDA 近日,AMD正式推出了HIP SDK,这是ROCm生态系统的一部分,基于开源ROCm解决方案,HIP SDK使消费者可以在各类GPU上运行CUDA应用,为专业和消费级GPU提供CUDA支持。
  • 麻省理工发现新型量子磁铁释放电子潜力 研究人员发现了如何控制异常霍尔效应和贝里曲率来制造用于计算机、机器人和传感器的柔性量子磁体。
  • 电池能用三十年?美国Ener Venue称推出革命性电池技术 三元锂离子电池的理论寿命约为800次循环,磷酸铁锂约为2000次,而钛酸锂据说可以达到1万次循环,也就是说常规普通人使用的锂离子电池每天完全充放电三次,最多也就能用上几年的时间。虽然相较于铅酸电池200-300次的循环寿命来说,这已经是很大幅度的提升了,但现在有一家公司宣称他们的电池可以充放电30000次,每天充放电三次,能用30年。
  • 测试中比友商温度低14度,一加天工散热系统怎么做到的? 7月27日,一加在2023年ChinaJoy上发布了全球首创的散热技术,即航天级三维立体散热系统“天工散热系统”,这是一加的又一次新的尝试,让我们一起来了解一下。
  • 万物电气化:探索绿色未来之路 在本文中,我们将重点介绍美国年度脱碳展望(ADP)2022报告中的一些重要发现。本报告着眼于实现净零经济的各种情景。我们在本文中重点关注的方法称为“中心情景”,它遵循到2050年实现净零排放的时间表。
  • 韩国造世界首个室温超导体,闹剧还是新的未来? 7月22日,韩国的一个科研团队在预印本网站arXiv平台上上传了两篇论文,声称发现了世界上首个常压室温超导体,这种材料是一种改性铅磷灰石名为LK-99,超导临界温度在127摄氏度,即400K以上,而且在常压下就具备超导性。
  • 下一个医疗前沿:网联可穿戴设备 医疗和消费级可穿戴设备将继续增强连接性和电池寿命,以实现对血压、体温和身体水分等多种生物标志物的实时和非侵入性监测。
  • 瑞能半导体全球首座模块工厂在上海湾区高新区正式投入 瑞能微恩半导体暨瑞能金山模块厂开业典礼在上海湾区高新区隆重举行,标志着瑞能全球首座模块工厂正式投入运营,将主要生产应用于消费、通讯、新能源以及汽车相关的各类型功率模块产品,串联客户和生态圈,积极推动行业高质量发展。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了