广告

【技术大咖测试笔记系列】之十:在当今高压半导体器件上执行击穿电压和漏流测量

2021-12-20 17:51:23 泰克科技技术大咖 阅读:
宽带隙(WBG)器件由于物理特点,机身二极管压降较高,因此对空转时间和打开/关闭跳变的控制要求要更严格。准确的电源和测量测试对表征这些高压器件非常关键,以便能够及时制订正确的设计决策。

在经过多年研究和设计之后,碳化硅(SiC)和氮化镓 (GaN)功率器件正变得越来越实用。这些器件尽管性能很高,但它们也带来了许多挑战,包括栅极驱动要求。SiC要求的栅极电压(Vgs)要高得多,在负偏置电压时会关闭。GaN的阈值电压(Vth)则低得多,要求严格的栅极驱动设计。宽带隙(WBG)器件由于物理特点,机身二极管压降较高,因此对空转时间和打开/关闭跳变的控制要求要更严格。QhCednc

准确的电源和测量测试对表征这些高压器件非常关键,以便能够及时制订正确的设计决策。提高设计裕量和过度设计只会推动成本上升,导致性能下降。此外,这些器件一般会涉及超过200 V的高压,因此确保人身安全,防止触电非常关键。QhCednc

高压器件测试QhCednc

高压半导体器件基本表征一般需要研究击穿电压和漏流。这两个参数帮助器件设计人员迅速确定器件是否正确制造,确定其能否有效地用于目标应用中。QhCednc

击穿电压测量QhCednc

在测量击穿电压时,我们要对被测器件施加一个不断提高的反向电压,直到达到一定的测试电流,表明器件被击穿。图1是使用源测量单元(SMU)仪器在高压二极管上进行击穿测量,比如使用Keithley 2470 高压源表SourceMeter® SMU仪器。注意SMU仪器怎样连接到二极管的负极上应用反向电压。对高压二极管,使用安全三同轴电缆和正确接地的安全配线箱。QhCednc

QhCednc

图1. 使用2470 高压SMU仪器高压二极管进行的典型击穿电压测量。QhCednc

在判断击穿电压时,一般会在远高出被测器件预计额定值的水平上进行测量,以保证被测器件强健可靠。SMU仪器(如2470拥有1100 V源功能)一般足够高,可以测试当今SiC和GaN 器件及未来器件设计。QhCednc

人身安全考虑因素QhCednc

                     QhCednc

图2: 正确接地的测试夹具。    图3: 安全互锁连接在Keithley 2470 SMU仪器面板上的位置。QhCednc

在进行高压测试时,人身安全至关重要,必须提前预防,避免触电:QhCednc

把被测器件(DUT)和任何暴露的连接密封在正确接地的夹具中,如图2所示的夹具。QhCednc

在理想情况下,SMU仪器要有安全互锁,如图3中的2470后面板所示。2470可以完全互锁,在互锁无效(互锁开关闭合)时高压输出会关闭。SMU仪器的互锁电路应连接到正常开路的开关,只有在系统中的用户接入点闭合时开关才会闭合,以保证操作人员不会接触DUT的高压连接。例如,一旦打开测试夹具盖,开关/继电器就会开路,脱离2470 SMU的互锁。QhCednc

使用额定值达到系统最大电压的电缆和连接器。吉时利TRX-1100 V高压三同轴电缆是专为2470设计的,满足了当今高压安全标准。QhCednc

在处理通电元件上的高压时,一直戴上正确的安全手套,如图4所示。QhCednc

QhCednc

图4. 在处理通电元件上的高压时使用正确的安全手套QhCednc

漏流测量QhCednc

在典型的功率转换应用中,半导体器件作为开关使用。漏流测量表明了半导体接近理想开关的程度。此外,在测量器件的可靠性时,漏流测量用来表明器件劣化,预测器件的使用寿命。QhCednc

半导体研究人员正在寻找各种材料,以制作质量更高的开关,生产漏流很小的高功率器件。SMU仪器(如Keithley 2470)提供了精密弱电测量功能,测量分辨率最低可达10 fA。QhCednc

在测量<1 μA电流时,为了防止不想要的测量误差,可以使用三同轴电缆和静电屏蔽装置。三同轴电缆非常重要,部分原因是它们允许承载来自电流测量仪器的保护端子。保护功能消除了系统漏流影响,使其绕过测量端子。使用静电屏蔽装置,可以使静电电荷避开测量端子。静电屏蔽装置是一种金属配线箱,放在电路和任何暴露的连接周围。安全测试配线箱可以作为静电屏蔽装置使用。QhCednc

使用Keithley 2470 SMU仪器和KickStart软件表征SiC功率二极管,2470 SMU仪器与吉时利KickStart软件相结合,可以准确安全地快速测试高压半导体器件上的击穿电压和反向漏流。QhCednc

如需了解这一组合怎样成功地解决固有的挑战,请下载应用指南:使用Keithley 2470 SourceMeter®源测量单元(SMU)仪器和KickStart软件在高压半导体器件上进行击穿和漏流测量QhCednc

关于泰克科技QhCednc

泰克公司总部位于美国俄勒冈州毕佛顿市,致力提供创新、精确、操作简便的测试、测量和监测解决方案,解决各种问题,释放洞察力,推动创新能力。70多年来,泰克一直走在数字时代前沿。欢迎加入我们的创新之旅,敬请登录:tek.com.cnQhCednc

# # #QhCednc

Tektronix是泰克公司的注册商标。所有其他商号均为各自公司的服务标志、商标或注册商标。QhCednc

  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 晶圆厂联手封测厂,为供应链赋予新意 在半导体产业日益关注封装技术创新,以超越芯片微缩的困境之际,晶圆厂联手封测厂的合作伙伴关系将支撑起下一代封装技术,并彰显封装技术在半导体供应链的重要意义...
  • IEC 61000-4-3标准的步进频率 本文重点在于讨论如何使用更简略的步骤进行IEC 61000-4-3标准的EMI/EMC测试,以加快产品开发时间...
  • 小米预研固态电池技术前景诱人,能量密度突破1000Wh/L 3月1日,小米又宣布预研固态电池技术,通过将电解液替换为固态电解质,不仅能量密度突破1000Wh/L,更大幅提升低温放电性能和安全性,称“有望一举解决手机电池三大痛点”。
  • 用于GaN HEMT的超快速分立式短路保护 GaN HEMT的保护电路必须比硅基MOSFET中使用的传统短路和过流保护方法更快。
  • 【电驱变革深探】: 从测试角度看800V超充技术下的电驱 市场调研数据显示,超过80%的用户对电动汽车的充电速度和续航里程表示不满,虽然新能源汽车市场在近几年飞速变化,但距离满足消费者心理预期的更高使用需求,尚有较大提升空间。预测数据显示,到2025年,800V SiC的市场占比将达到15%左右;不过在电动汽车全球发展提速的大趋势下,这一预测节点也许会提前到来。
  • 如何快速洞察PCIe发送端链路健康状况? 本文介绍实际案例,演示泰克全新的TMT4 PCIe性能综合测试仪发送端测试方法,如何为PCIe板卡和系统设计提供可操作的测试见解。
  • Arteris FlexNoC 5物理感知NoC IP,物理融合速度快5倍 据Arteris官网消息,系统IP供应商Arteris宣布推出物理感知片上网络(NoC)互连IP Arteris FlexNoC 5,可使SoC架构团队、逻辑设计人员和集成商能够整合跨功率、性能和面积(PPA)的物理约束管理,以提供连接SoC的物理感知IP。该技术使物理融合速度比手动优化快5倍,且布局团队可以减少汽车、通信、消费电子、企业计算和工业应用的迭代次数。
  • 【汽车创新三大驱动力】系列之一: 解决电动化和电池测 围绕电动汽车和电池的最大问题之一,是如何提高单次充电的容量和续航里程。而围绕续航能力有一些关键绩效指标,同样围绕电池的效率、加速和快速充电能力也有一些关键绩效指标。我们今天看到的趋势是锂离子电池,但在未来,我们将看到向固态的转变。这主要是由固态电池带来的重量减轻和密度增加所推动的,而重量是影响车辆续航能力的一个关键因素。
  • 浅谈锥形电感器 在射频(RF)和微波工作时,有一种情况是必须将直流电源(DC)导入信号传输线,但又不至于降低该线路的高频作用...
  • 米尔ARM+FPGA架构开发板PCIE2SCREEN示例分析与测试 本次测试内容为基于ARM+FPGA架构的米尔MYD-JX8MMA7开发板其ARM端的测试例程pcie2screen并介绍一下FPGA端程序的修改。
  • 苹果无创测血糖技术取得重大突破,Apple Watch或将集成 据外媒报道,日前,苹果在无创血糖监测技术取得突破性进展,未来将搭载在Apple Watch上。该项目被称为E5,其研究的目标是在不需要刺破皮肤取血的情况下,测量人体葡萄糖含量。
  • 打造全球探测距离最远雷达,“中国复眼”项目一期正式开 据报道,近日,由北京理工大学重庆创新中心谋划建设,中国电科网络通信研究院深度参与的深空探测雷达“中国复眼”项目一期正式开机,首次实现了利用分布雷达体制进行深空探测,成功拍摄出我国首张月球环形山地基雷达三维图像。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了