广告

系统级封装出现故障——凶手会是谁?

2022-04-25 15:33:35 歐學仁、吳羿鋒,宜特科技故障分析工程 阅读:
IC Repackage移植技术,可从SiP、MCM等多芯片或模块封装体中,将欲受测之裸片,无损伤的移植至独立的封装测试体,避开其他组件的干扰,进行后续各项电性测试,快速找到IC故障的元凶是谁。

随着多媒体视频/高速通信组件等科技产品朝向多功能化与IC体积微小化迈进,组件间的系统化整合也被视为未来的重点发展技术。目前业界的封装技术大多朝系统级封装(System in Package;SiP)、多芯片模块(Multi Chip Module;MCM)实现优化。8N3ednc

然而,当IC出现故障时,想分析其中一颗组件或裸片(Die)的异常状况,又碍于SiP、MCM内部打线或基板线路互相联结的复杂关系,将导致进行电性测试时,容易受到其他芯片或组件影响,造成判定困难,甚至无法判定。8N3ednc

该如何解决此状况呢?笔者任职于验证分析实验室——宜特科技(Integrated Service Technology;iST),累积多年厚实的半导体验证分析技术,研发出IC Repackage移植技术,可从SiP、MCM等多芯片或模块封装体中,将欲受测之裸片,无损伤的移植至独立的封装测试体,避开其他组件的干扰,进行后续各项电性测试,快速找到IC故障的元凶是谁。8N3ednc

如何制作测试治具

芯片出厂的最后环节,即是进行裸片针测(Chip Probing,CP),在晶圆(Wafer)完成后、封装前利用点针手法,尽可能先将坏的芯片筛检出来,PASS的裸片经过封装后,再进行最终测试(Final Test,FT),即可完成制造并出货。8N3ednc

不过,通常属于新产品研发的芯片、或是经由客退的芯片,当须重新进行FT,数量皆不多,业界大型封装厂对于此类的少量芯片植入封装体需求,排程交期都较长,甚至不接受少量定制化的封装体芯片植入作业。8N3ednc

有些客户会直接使用陶瓷封装材料植入芯片,然而,陶瓷封装材料或许可以解决部份FT的问题,但市面上单一规格的陶瓷封装材料可能会遇到引脚长度及宽度与测试治具/载具无法匹配,或是陶瓷材料材质与塑料封装体材质不同,因而影响FT结果。8N3ednc

宜特科技使用客户手边现有的IC成品,进行开盖(Decap),做成符合需求的测试治具/载具,后续能便利且有效进行FT。进行IC Repackage移植,在宜特实验室中需要经过五道步骤(图1):8N3ednc

8N3ednc

图1:宜特科技实验室的IC Repackage移植五步骤。8N3ednc

步骤一:收到待测样品后,先进行「样品进料质量控制」(Incoming Quality Control,IQC),并确认客户提供的相关信息,包括利用超高分辨率数字显微镜(3D OM)检查外观有无受损、确认封装体内Die的数量、目标异常芯片位置与厚度等,这个阶段主要目的是确认样品现况是否吻合客户反应情形。8N3ednc

步骤二:将利用X射线检测(Xray)或超音波扫瞄(SAT)进一步确认目前样品有无封装异常,并定位确认需要取出的目标异常芯片位置。接着,藉由IV电特性量测,来确认封装体内客户指定pin的状况;同时,视情况利用Thermal EMMI (InSb)以确认亮点与目标异常芯片的关系。8N3ednc

步骤三:则是利用酸蚀及研磨方式,取出目标异常芯片,并藉由OM确认芯片有无裂痕(Crack)、烧毁(Burnout)、缺口(Chipping)等问题。8N3ednc

步骤四:将取出的裸片重新打线封装成客户要求的封装。这一步骤实际操作情形分成两部份:8N3ednc

1.透过现有IC成品做成测试治具/载具8N3ednc

首先,选择符合客户测试治具/载具的IC成品,接着,利用特殊开盖方式,将部分打线及芯片露出(图2),以利后续移除芯片及打线。8N3ednc

8N3ednc

图2:封装体经过特殊开盖方式露出芯片及部份打线。8N3ednc

接着,以手动方式移除芯片及打线/引线(图3),露出底板及导线架(二焊点),并保留镀银层。8N3ednc

8N3ednc

图3:使用人工物理手法,移除芯片及打线(引线)。8N3ednc

最后,清除封装体内残余的胶体及打线(引线),确认内部无残留物质,为后续成为测试治具/载具进行检查与确认(图4)。8N3ednc

8N3ednc

图4:完成可以封装打线的封装体。8N3ednc

       2. 结合待测芯片样品与测试治具成为新样品8N3ednc

利用封装黏晶,将待测芯片样品放置于测试治具;接着,施打对应的打线/引线;最后,使用封胶将打线/引线及芯片保护隔绝,完成成品(图5)。8N3ednc

8N3ednc

图5:透过黏晶、引线、封胶,结合待测芯片样品与测试治具。8N3ednc

步骤五:先针对样品进行IV电特性量测或是,客户也可以携回该颗重新封装过后的IC,至自家厂内进行功能性电特性量测。8N3ednc

IC Repackage移植经典案例

1.  取出SiP中的目标异常Die,制备成wBGA8N3ednc

图2为SiP样品,宜特科技透过Repackage移植技术,将其中的目标异常裸片取出,进行样品制备,移植成窗型BGA(window Ball Grid Array;wBGA)封装形式。藉此,客户即可避开其他组件的干扰,针对该颗wBGA进行后续自动测试设备(Automatic Test Equipment;ATE),确认异常位置。8N3ednc

8N3ednc

图6:移植SIP内的目标裸片,样品制备为wBGA封装形式,顺利进行后续各项测试。8N3ednc

2.  从模块中取出组件,进行植球8N3ednc

当模块中有多颗IC或组件时,宜特科技透过研磨或切割,将目标组件从模抯中取出,接着进行植球服务,让客户可以取回至自家厂内进行各项测试,厘清相关故障原因。8N3ednc

图7为从Module中取出目标BGA IC,经过尺寸量测及植球后,便于客户后续测试。8N3ednc

8N3ednc

图7:取出Module内的目标组件,经植球后,即可回到客户厂内测试。8N3ednc

本文同步刊登于EDN Taiwan 20224月号杂志8N3ednc

责编:Echo
  • 好像陈述逻辑有点混乱,可能是我理解的问题:
    1,原意是要取出需要分析的客户退回的芯片,然后用新的package(框架)来重新打线,过胶,重新测试;
    2,但实际看你的图片操作显示,是用了取出芯片的旧package,放入新的芯片,重新打线,过胶,测试。

    不知道理解的对不对,欢迎指教
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 英伟达惨遭背刺,这个SDK让AMD平台也能运行CUDA 近日,AMD正式推出了HIP SDK,这是ROCm生态系统的一部分,基于开源ROCm解决方案,HIP SDK使消费者可以在各类GPU上运行CUDA应用,为专业和消费级GPU提供CUDA支持。
  • 电池能用三十年?美国Ener Venue称推出革命性电池技术 三元锂离子电池的理论寿命约为800次循环,磷酸铁锂约为2000次,而钛酸锂据说可以达到1万次循环,也就是说常规普通人使用的锂离子电池每天完全充放电三次,最多也就能用上几年的时间。虽然相较于铅酸电池200-300次的循环寿命来说,这已经是很大幅度的提升了,但现在有一家公司宣称他们的电池可以充放电30000次,每天充放电三次,能用30年。
  • 测试中比友商温度低14度,一加天工散热系统怎么做到的? 7月27日,一加在2023年ChinaJoy上发布了全球首创的散热技术,即航天级三维立体散热系统“天工散热系统”,这是一加的又一次新的尝试,让我们一起来了解一下。
  • 后来居上,美光宣布已出样业界首款HBM3 Gen2内存 7月26日,美光宣布推出业界首款8层24GB HBM3 Gen2内存芯片,是HBM3的下一代产品,采用1β工艺节点,目前该款美光内存芯片正在向客户提供样品。
  • 韩国造世界首个室温超导体,闹剧还是新的未来? 7月22日,韩国的一个科研团队在预印本网站arXiv平台上上传了两篇论文,声称发现了世界上首个常压室温超导体,这种材料是一种改性铅磷灰石名为LK-99,超导临界温度在127摄氏度,即400K以上,而且在常压下就具备超导性。
  • TI无线MCU创新方案,助力用户加速拥抱物联网 7月21日,由AspenCore主办的“2023全球MCU生态发展大会”在深圳罗湖君悦酒店隆重举行,特邀请到MCU领域的领军企业之一德州仪器(TI)参加了“无线MCU分论坛”,论坛上,TI无线产品工程师魏天华分享了主题为“创新型无线解决方案,助力不断发展的互联世界”的演讲,为现场观众带来了TI最新的无线MCU系列,以及对于这一市场的深刻思考。
  • 降低侵入式风险,清华开发出“入耳式”脑机接口 近日,清华大学研究团队宣布开发出一种名为SpiralE BCI的脑机接口,该器件采用“入耳式”设计,使用者只需要将器件插入耳道,即可读取相应脑电波信息,侵入性远远低于其他的侵入式脑机接口设备。
  • TETRA标准被曝存在后门漏洞,1分钟内就能被破解 TETRA是由ETSI制定的开放性无线数字集群标准,据称该技术标准是世界上最安全、最可靠的无线电通信标准之一。而就在近日有研究人员发现该标准存在着多个安全漏洞,可以暴露通过该标准传输的敏感数据。
  • 网传iPhone 15将采用叠层电池,这是一种什么电池技术? 根据推特用户@RGcloudS的爆料,苹果的下一代手机iPhone15系列可能会采用叠层电池技术,以提高能量密度和延长使用寿命,那这所谓的叠层电池技术到底是怎么一回事呢?
  • 中国首款量子计算机操作系统,本源司南PilotOS正式上线 近日,据安徽省量子计算工程研究中心的消息,本源司南PilotOS客户端终于正式上线。PilotOS客户端是本源量子完全自主研发的一款一站式学习与开发平台,用户可以直接进行本地量子计算编程,不需要联网使用,实现用户对量子计算软件服务“打开即用”,助力量子计算编程“小白”顺利成为量子计算编程开发者。
  • 立足实际客户应用场景,无线MCU让世界更加智能、互联 2023年7月21日,由AspenCore主办的“2023全球MCU生态发展大会”在深圳罗湖君悦酒店隆重举行,邀请德州仪器、Microchip、意法半导体、欧米智能等知名企业和众多专家学者参加了“无线MCU分论坛”,一同探讨无线MCU的无限可能。
  • 射频电磁仿真为什么需要新方法? 本文将讨论电磁仿真和电磁仿真的进展,这些进展可能有助于加快运行速度,并且在执行更高效仿真的同时不会降低精度。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了