广告

平衡音箱中并联升压转换器的功率分配

2022-05-18 09:45:02 YOUHAO XI 阅读:
用于大功率便携式音箱(如拉杆音箱)的音频放大器通常使用锂离子电池供电,这些电池可以从单节电池到串联的几节电池不等。设计人员通常使用升压转换器为音频放大器产生电压,因为音箱的功耗可能超过几百瓦。

用于大功率便携式音箱(如拉杆音箱)的音频放大器通常使用锂离子电池供电,这些电池可以从单节电池到串联的几节电池不等。设计人员通常使用升压转换器为音频放大器产生电压,因为音箱的功耗可能超过几百瓦。0Ngednc

出于成本考虑,大功率音频放大器的一种方法是在并联主从配置中使用两个升压转换器,其中从转换器的反馈电压节点接地,其COMP电压节点连接到主转换器的COMP电压节点。由于COMP节点电压决定了功率电感的峰值电流,从转换器会跟踪主转换器产生相同的峰值电流,从而实现两个转换器之间的负载分配。0Ngednc

这种方法在峰值电流平衡方面简单有效。然而,决定实际功率的是与电感峰值电流不同的直流电流。电感值的不匹配不可避免地会导致两个转换器中的直流电流不同,即使它们的峰值电流相同。更糟糕的是,两个转换器中的峰值电流很容易被抵消超过20%,由于固有电路参数容差,因此就会导致更大的电流分配误差。这些固有电路参数容差包括:0Ngednc

  • 脉宽调制(PWM)控制器从COMP引脚到PWM比较器的内部电压失调。
  • 电流检测电阻以及电流检测放大器的增益(如果适用)。
  • 电流检测信号上所叠加的斜率补偿信号。

这就会导致不平衡的功率分配,使一个转换器过热,如果没有采用更昂贵的散热管理方案的话,这种情况就会显著降低系统的整体可靠性。0Ngednc

但是,还有其他选择。本文将讨论简单的均流方案,并提出一种将并联升压转换器之间能将直流均流误差降至最低的方法,包括作为概念验证的实验结果。0Ngednc

均流控制方案及工作原理

图1显示了一种均流控制方案,其中从转换器被迫提供与主转换器相同的负载电流。分配控制电路包括:0Ngednc

  • 运算放大器(运放)U1
  • 检流电阻器RSN1和RSN2
  • 由R1和R3以及R2和R4形成的电阻分压器
  • 可选检测滤波电容器C1和C2
  • 补偿电容C3,用于稳定分配控制环路
  • 分配控制电阻R5

0Ngednc

图1:在这种均流控制方案中,从转换器被迫提供与主转换器相同的负载电流。(来源:德州仪器)0Ngednc

假设U1是理想的运放,RSN1=RSN2,R1=R2,R3=R4。如果IO2大于IO1(U1的输出电压),VC就会增加。因此,FB2电压将会上升,这就会降低VO2和IO2,直到IO2=IO1。类似地,如果IO2小于IO1,电路会强制VO2和IO2增加以达到IO2=IO1。简而言之,IO2会跟踪IO1,以实现平衡的均流。0Ngednc

在稳态下,直流电流IO1、IO2和IOUT满足等式1:0Ngednc

0Ngednc

分析电流平衡误差

实际上,没有一个电路参数是完美的。两个因素会给图1所示的电路带来电流分配误差:RSN1、RSN2、R1、R2、R3和R4的电阻值容差,以及U1的输入失调电压和偏置电流。0Ngednc

为了最大限度地减少电流平衡误差,在所有六个位置使用E96系列的电阻(容差为0.1%)会将其对均流误差的影响限制在0.6%以下。0Ngednc

0Ngednc

图2:U1等效电路的样子。(来源:德州仪器)0Ngednc

我们来分析一下U1引起的误差。假设U1的输入失调电压为VOS,失调电流为IOS,RSN1=RSN2,R1=R2,R3=R4。经过简单的电路分析后,可以看到由VOS和IOS引起的分配误差,如等式2所示。0Ngednc

∆IO=|IO1–IO2|=1/RSN1(R1+R3)/R3×VOS+R1×IIF)          (2)0Ngednc

等式2显示:0Ngednc

  • 具有较高VOS和IOS的运放会产生较大的误差。
  • 较高的RSN1和RSN2值有助于减少误差。
  • 电阻分压器的电压步进比越高,与电压相关的误差就越大。
  • 如果R1=R2=0Ω,则由IOS引起的误差就可以消除。

但是,在选择这些器件时还有其他限制。具有超低VOS和IOS的运放通常很昂贵。一个大检流电阻不仅会导致高功耗,而且成本更高。因此,更具性价比的方法是优化电阻分压器的选择。0Ngednc

优化电阻分压器选择

电阻分压器的降压比应该尽可能小。在最好的情况下,运放U1应能将转换器的输出电压作为偏置电源电压。这是因为这样一来就可以移除每个分压器的底部电阻,如图3所示。由于U1的两个输入引脚具有高阻抗,每个分压器顶部电阻两端的压降就可以忽略不计,这就使U1的两个输入能够直接检测电流差。这种直接检测可使检测误差和分配误差最小化。它还消除了电阻分压器中的静态功耗。0Ngednc

0Ngednc

图3:显示VOUT何时能为U1直接供电的最佳均流方案。(来源:德州仪器)0Ngednc

如果不把输出电压轨上的开关纹波衰减掉,其就可能影响U1的性能。使用C1和C2与R1和R2组成低通滤波器,就可以降低U1输入端的纹波电压。因此,R1和R2不得为0Ω。在选择R1和R2以及C1和C2的值时必须要进行权衡,以便以最小的成本实现所需的纹波衰减。0Ngednc

并联升压转换器的均流

对于某些升压转换器应用,VOUT可能会超过U1的最大电源电压额定值。因此,U1的偏置电源必须具有较低的电压,例如转换器的偏置电源电压VCC。在这种情况下,必须使用图1中的R3和R4将V1和V2保持在U1的偏置电源电压之下。这样做的缺点是增加了电阻分压器的分配误差和相关的功耗。0Ngednc

为了提高并联升压转换器的性能,图4给出了一种改进的均流控制方案。电流检测元件放置在输入侧。工作原理与图1类似,不同之处在于该方案实现了两个转换器输入电流的分配平衡。0Ngednc

图4:采用并联设置的升压转换器均流方案可提供更好的性能。(来源:德州仪器)0Ngednc

同样,假设U1是理想的运放,RSN1=RSN2,R1=R2,R3=R4,则输入电流IIN、Ii1和Ii2满足等式3。0Ngednc

0Ngednc

从E96系列中选择所有六个电阻(0.1%容差)可以将其对均流误差的影响限制在<0.6%。U1失调电压和电流的影响与前面分析的相同,即用如下所示的等式4可计算出分配误差:0Ngednc

∆IIN=|Ii1–Ii2|=1/RSN1(R1+R3)/R3×VOS+R1×IIF)          (4)0Ngednc

由于升压转换器的输入电压低于VOUT,因此可以降低所需电阻分压器的降压比来减小分配误差。如果升压输入电压小于U1的最大偏置电源电压额定值,U1可以直接采用输入电压VIN作为其偏置电源,并且可以移除R3和R4以获得与前面讨论相同的优势。0Ngednc

实验结果

为了验证这个概念,可以在分配控制电路旁边使用两个LM5155升压控制器评估模块,如图4所示。由于转换器的最大输入电压为18V,因此为U1选择LM8261运放可以直接将VIN作为偏置电源,从而消除R3和R4。其他选择包括:0Ngednc

  • RSN1=RSN2=10mΩ
  • R1=R2=499Ω
  • C1=C2=1μF
  • C3=100nF
  • R5=50kΩ

根据LM8261数据手册,U1的最大VOS为7mV,最大IOS为400nA。因此,如用等式4计算,U1引起的最坏情况最大分配误差为0.72A:0Ngednc

ΔIIN≤1/10(7mV+499Ω×400nA)=720mA0Ngednc

图5图6显示了两个典型的实验结果。主从转换器之间的输入均流误差小于120mA,远小于最坏情况下的720mA误差。0Ngednc

0Ngednc

图5:VIN=8V和98W负载下进行输入电流分配的显示结果。(来源:德州仪器)0Ngednc

0Ngednc

图6:VIN=8V和72W负载下进行输入电流分配的显示结果。(来源:德州仪器)0Ngednc

所提出的概念还应用到了典型拉杆音箱的9~16VIN至50VOUT、300W电源的参考设计中,该参考设计由两个150W LM5155升压转换器组成,采用主从配置。0Ngednc

由于升压转换器的输入电压通常低于输出电压,因此将传感控制电路置于输入侧有助于减少电流分配误差。本文所提出的方案可能是拉杆音箱中所用高升压比升压转换器的一种解决方案。在此类应用中,输入通常是12V电池,输出电压大于40V,因此需要并联升压转换器来支持超过300W的高保真音频放大器,例如TPA3221。通过这种方案,并联转换器可以实现相当平衡的功率分配。0Ngednc

“Power Tips”第105篇文章的作者Youhao Xi是德州仪器(TI)升压转换器和控制器解决方案的应用经理。0Ngednc

(原文刊登于EDN美国网站,参考链接:“Balancing power sharing of paralleled boost converters in speakers”,由Bowen Tan编译。)0Ngednc

责编:Bowentan
本文为电子技术设计原创文章,未经授权禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 【闯关答题抽奖】英飞凌无线电力传输方案中心上线啦~ 每闯关成功一关获得一次抽奖机会,总共4关,最多可获得4次抽奖机会。
  • 商务部暂停天然砂对台湾地区出口,对其半导体制造产业有 据EDN电子技术设计了解,商务部网站8月3日早晨8点发布最新消息,表示将从即日起暂停天然砂对台湾地区出口。不少网友认为暂停天然砂对台湾地区的出口,此举将严重影响台湾的建筑业,实则影响不仅仅如此。台湾地区天然砂进口量的90%以上来自大陆,而台湾芯片占台湾2021年出口额的34.8%。网友称商务部暂停天然砂对台湾地区出口是捏到了台湾半导体制造业的七寸。
  • 华盛顿大学首创用人体热能为可穿戴电子设备供电 从健康和健身追踪器到虚拟现实设备,可穿戴电子产品已成为我们日常生活的一部分,但找到持续为这些设备供电的方法是一项挑战。华盛顿大学的研究人员开发了一种创新的解决方案:首创的柔性、可穿戴热电设备,可将体热转化为电能。
  • Nothing Phone 1 官方承认品控缺陷,但拆解后有新发现 前一加手机联合创始人裴宇创立的 Nothing 公司在国外备受关注,但Nothing Phone 1发布之后却被网友爆料大量翻车现场。目前官方也已承认了Nothing Phone 1 在前摄开孔位置附近出现了坏点或绿晕的问题。但Nothing Phone 1也并非一无是处,著名的 JerryRigEverything 耐用性测试就称其“超级坚固”。
  • 苹果发布2022财年第三财季业绩,营收829.59亿美元 Apple 今日公布了 2022 年第三财季的财务业绩。报告显示,苹果公司第三财季公布收入为 829.59亿美元,去年同期为 814 亿美元,同比增长2%;季度净利润为 194 .4亿美元,去年同期为217 亿美元,同比下降10.6%;其中,iPhone带来的营收406.7亿美元,同比增长3%。
  • 工程师开发出可以看到身体内部的贴纸 麻省理工学院的工程师设计了一种贴片,可以产生身体的超声图像。这种邮票大小的设备贴在皮肤上,可以提供 48 小时内脏器官的连续超声成像。
  • 【报名领IC设计文集】Cadence 用户大会已开放注册 今年的CadenceLIVE China 为线上虚拟盛会,将由60余位行业和技术专家进行直播分享,数十余家产业链合作伙伴的虚拟展台展示最新技术与产品,无拘于空间地点的限制,您可随时接入,畅享此技术盛宴!
  • 美国参议院批准价值2460亿美元的芯片法案 美国参议院周三通过立法,以超过 750 亿美元支持国内半导体产业。GlobalFoundries、英特尔、三星代工厂、德州仪器、台积电和其他在美国建立半导体制造设施的公司或将受益。
  • 俄罗斯要绕过5G直接开发6G!投资300亿卢布够吗? 在全球通信技术竞争上,中国的5G发展速度遥遥领先于其他国家,更多国家开始在6G上较劲儿。今日,“俄罗斯决定绕过5G直接开发6G网络”登上热榜,引起网友热议。
  • Works With 2022开发者大会主题演讲嘉宾出炉,聚集全球 Silicon Labs引领物联网殿堂级行业盛事,今年扩大规模更胜以往
  • 华为天才少年稚晖君用108天打了个字,重新定义客制化键 自称“鸽王”的稚晖君终于更新啦。这次他带来的新项目则是:一把完全客制化、带屏幕模块的机械键盘!有网友表示,稚晖君的这个新项目,为键圈乃至整个键盘行业提供了新的设计思路,甚至有望改变目前客制化以换壳为本的囧境。
  • 因眼睛小车主被辅助驾驶误判“开车睡觉”,小鹏、蔚来回 昨日,汽车博主@常岩CY 发博称自己突然上了热搜,原来就是因自己眼睛小被小鹏汽车自动驾驶误判“开车睡觉”,不住的发出提醒。此外,@常岩CY 称在多款车型上都收到此困扰。无论是红外还是摄像头,只要开始检测眼睛,就会判定过度疲劳。小鹏P7会提示他睡觉,蔚来ET7一开车就认为其疲劳和走神,岚图FREE会在冬天为了让其“别困”而打开冷风……
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了