广告

石墨烯有助金属电极和二维材料的转移印刷

2022-06-22 15:50:27 综合报道 阅读:
中国科学院、湖南大学、香港城市大学和复旦大学的研究人员最近开发了一种新技术,可以更有效地在二维材料上转移金属电极,从而开发出更可靠的金属-半导体结。这项技术发表在Nature Electronics上。

金属-半导体结,即金属与半导体材料连接的电结,是众多电子和光电器件的关键组件。虽然它们现在在全球范围内广泛生产和使用,但创建集成传统金属和 2D 半导体的高质量结可能很困难。pjGednc

事实上,当应用于二维材料时,传统的金属沉积技术需要一个称为离子轰击的过程,可能会导致化学紊乱。此外,现有的转移印刷技术——将金属电极预先沉积并转移以形成范德华(vdW)结,但是金属电极的预沉积会在基底上形成化学键,这使得后续的转移变得困难。pjGednc

中国科学院、湖南大学、香港城市大学和复旦大学的研究人员最近开发了一种新技术,可以更有效地在二维材料上转移金属电极,从而开发出更可靠的金属-半导体结。这项技术发表Nature Electronics上。pjGednc

pjGednc

这项技术需要将金属电极阵列从石墨烯晶片上剥离,然后将它们转移印刷到不同的二维材料上。研究人员将6种不同种类的金属沉积到晶圆级石墨烯/锗供体基板上,其中包括弱粘附金属,即铜、银和金,以及强粘附金属,即铂、钛和镍。由于弱粘附金属和强粘附金属都容易分层,因此可以使用聚合物薄膜轻松地将金属电极阵列从基板表面剥离。随后,用去离子水去除聚合物薄膜后,晶圆级金属图案可以转移到任意目标上,良率可达100%,较二氧化硅基板转印方法更优。研究人员认为,石墨烯辅助金属转印方法是大规模制造二维材料集成电路的可靠方案。pjGednc

石墨烯辅助金属转移印刷技术利用二维材料上的vdW表面来创造独立的金属薄膜。与报道的SiO 2作为中间基板的转印技术相比,Gr/Ge基板所提供的vdW表面使弱粘附金属(如Cu、Ag和Au)和强粘附金属(如Pt、Ti和Ni)的转移得以实现。由于石墨烯的vdW表面没有悬垂键,没有形成界面产物,Ti/Gr/Ge界面非常锋利。Ti和石墨烯之间微弱的vdW相互作用导致了较高的转移率。由于石墨烯辅助金属转移印刷工艺与传统的侵略性沉积相比是相当温和的,可以避免对脆弱的2D材料的损伤。pjGednc

从图1e、f中可以看出,石墨烯辅助金属转移印刷工艺可以将不同的金属,包括弱粘附金属(Cu、Ag、Au)和强粘附金属(Pt、Ti、Ni)转移到SiO2基底上。无论采用何种金属类型,直径为20 μm的10 × 10圆图案的转移率均可达100%,验证了该技术的通用性。为了说明这种工艺在制作短通道晶体管方面的潜力,研究者设计并制作了三种不同的通道长度,即4 μm、2 μm和400 nm(图1g)。pjGednc

pjGednc

除了传统的3D衬底,金属图案也可以转移到2D衬底上,如石墨烯和MoS 2。由5 μm宽的Au带组成的整个图案(字母'SIMIT')被成功地转移到SiO2、石墨烯和MoS2衬底上(分别如图2d-f所示)。Au的'SIMIT'模式在三种不同衬底上的完全转移也可以通过共焦拉曼映射来验证。当石墨烯等二维材料被高能原子或簇轰击时,金属电极沉积后很容易产生晶格缺陷,相比之下,石墨辅助金属转移打印技术是非侵入性的,像石墨这样的2D材料可以在不产生缺陷的情况下进行加工pjGednc

pjGednc

根据他们进行的初步测试,研究人员认为,他们的石墨烯辅助金属转移方法是基于 2D 材料大规模制造集成电路的可靠解决方案。pjGednc

在接下来的研究中,他们计划开始使用他们的技术来开发用于电子和光电设备的特定组件,以进一步评估其有效性。pjGednc

“除了一个简单的 2D 晶体管,我们正在使用这种技术来制造基本的 2D 逻辑单元,包括 AND-OR、NOR 和 AND 门,”研究人员表示。“此外,我们的方法的成本应该通过优化工艺和提高石墨烯/Ge基板的可重复使用性来进一步降低。”pjGednc

责编:Demi
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 用水泥和炭黑制造储能超级电容器 一项新的研究表明,人类最普遍的两种历史材料,水泥和炭黑(类似于非常细的木炭),可能会成为新型低成本储能系统的基础。该技术可以在可再生能源供应出现波动的情况下使能源网络保持稳定,从而促进太阳能、风能和潮汐能等可再生能源的使用。
  • 一种用于电路板回收的新基材:遇水能溶 英国的Jiva Materials公司开发了一种新型的PCB基材Soluboard,这种基材是由天然纤维包裹在一种无卤的聚合物中制成的,与行业内经常使用的FR-4基材不同,这种材料只要在90摄氏度左右的热水中浸泡30分钟,就可以分层溶解···
  • 美国公司声称发现室温超导材料,被授予了高于室温的第二 位于美国佛罗伦萨州的Taj Quantum的公司在社交媒体宣布,被授予了高于室温的第二类超导体专利。据称,这种独特的 II 型超导体(专利号:17249094)可在较宽的温度范围内工作,包括远高于室温的温度,从约 -100° F (-73° C) 到约 302° F (150° C) - 这是一种特性这在超导体世界中并不常见。
  • 机器人版的ChatGPT,谷歌新模型泛化能力大幅提高 7月28日,Google DeepMind宣布以训练AI聊天机器人的方式训练了一款全新的机器人模型Robotic Transformer 2(RT-2),这是一种新颖的视觉-语言-动作(VLA)模型,可以从网络和机器人数据中学习,并将这些知识转化为机器人控制的通用指令。
  • 俄罗斯“贝加尔湖”基准测试对比英特尔和华为芯片,惨败 俄罗斯服务器处理器 Baikal-S 的开发人员将其性能与美国和中国的同类芯片进行了比较。涉及六个流行指标。
  • 英伟达惨遭背刺,这个SDK让AMD平台也能运行CUDA 近日,AMD正式推出了HIP SDK,这是ROCm生态系统的一部分,基于开源ROCm解决方案,HIP SDK使消费者可以在各类GPU上运行CUDA应用,为专业和消费级GPU提供CUDA支持。
  • 麻省理工发现新型量子磁铁释放电子潜力 研究人员发现了如何控制异常霍尔效应和贝里曲率来制造用于计算机、机器人和传感器的柔性量子磁体。
  • 电池能用三十年?美国Ener Venue称推出革命性电池技术 三元锂离子电池的理论寿命约为800次循环,磷酸铁锂约为2000次,而钛酸锂据说可以达到1万次循环,也就是说常规普通人使用的锂离子电池每天完全充放电三次,最多也就能用上几年的时间。虽然相较于铅酸电池200-300次的循环寿命来说,这已经是很大幅度的提升了,但现在有一家公司宣称他们的电池可以充放电30000次,每天充放电三次,能用30年。
  • 测试中比友商温度低14度,一加天工散热系统怎么做到的? 7月27日,一加在2023年ChinaJoy上发布了全球首创的散热技术,即航天级三维立体散热系统“天工散热系统”,这是一加的又一次新的尝试,让我们一起来了解一下。
  • 万物电气化:探索绿色未来之路 在本文中,我们将重点介绍美国年度脱碳展望(ADP)2022报告中的一些重要发现。本报告着眼于实现净零经济的各种情景。我们在本文中重点关注的方法称为“中心情景”,它遵循到2050年实现净零排放的时间表。
  • 后来居上,美光宣布已出样业界首款HBM3 Gen2内存 7月26日,美光宣布推出业界首款8层24GB HBM3 Gen2内存芯片,是HBM3的下一代产品,采用1β工艺节点,目前该款美光内存芯片正在向客户提供样品。
  • 韩国造世界首个室温超导体,闹剧还是新的未来? 7月22日,韩国的一个科研团队在预印本网站arXiv平台上上传了两篇论文,声称发现了世界上首个常压室温超导体,这种材料是一种改性铅磷灰石名为LK-99,超导临界温度在127摄氏度,即400K以上,而且在常压下就具备超导性。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了