广告

波兰网友拆电子式电表:为什么要用两个MCU?

2022-08-15 17:46:25 TechEkspert 阅读:
转盘感应式电能表正陆续被电子式电能表取代——使用液晶显示器和非易失性存储器取代机械式计数器,并使用专门的电子测量系统代替电磁场中的转盘。本文就带大家了解下电子式电表(12EA5rn/1 PAFAL)的内部。

转盘感应式电能表正陆续被电子式电能表取代——使用液晶显示器和非易失性存储器取代机械式计数器,并使用专门的电子测量系统代替电磁场中的转盘。本文就带大家了解下电子式电表(12EA5rn/1 PAFAL)的内部。F9Dednc

F9Dednc

乍一看,大家可能会注意到LCD显示器周围有一些可能不一定是最重要但清晰可见的元器件:F9Dednc

  • 蓝色的浪涌电压抑制器(避雷器)
  • 2个黑色的光电器件(发射和接收光耦合器)
  • 光耦合器上的光隔离以及可能用于测试/编程的连接器

F9Dednc

光耦合器包括一个红外(IR)LED和一个红外晶体管,一些安装人员把它们称为“眼睛”,有了它们之后就可以与表计进行通信(通常为UART和IEC62056-21)。通过把头部贴到外壳上就可以进行通信,通常会将它通过USB连接到配备适当软件的计算机。表计外壳包含金属元件,头部是磁铁,因此读数时正确定位很简单。有市售设备,例如onemeter,可以从表计读取数据,然后将信息无线发送到我们智能手机上的app。并非所有表计都与此类解决方案兼容,并且一些供应商阻止了通过光学接口读取的可能性。例如,在较老的表计中,连续抄表可能会阻碍表计通过其他接口的并行通信。在光接口附近,我们发现了一个专门的BL6503S芯片,可以将它安全地认为是电表的心脏,因为正是这个系统负责跟踪电压和电流,而让我们可以计算能量。F9Dednc

这部分电路板上还有两个整流桥。F9Dednc

F9Dednc

显示器附近有一个簧片开关,可用作磁场传感器(例如来自钕磁铁),可以将该传感器视为用于防止试图干扰表计运行的保护。在LCD下方,可以发现32.768kHz石英晶振、EEPROM 95512 RP存储器和带有LCD驱动器的微控制器(MCU)MSP430F449。红色LED则会在计算电量时发生闪烁。F9Dednc

F9Dednc

每1kWh,LED会发生6400次闪烁,因此一次闪烁为0.15625Wh。使用这种LED指示灯的表计,可以让我们跟踪当前能耗,例如iNode电表F9Dednc

F9Dednc

外壳下面的微动开关,用来检测外壳受到未经授权的打开。F9Dednc

F9Dednc

端子布置是典型的瓦特表或电表。RS-485在较小的端子上引出,这种接口最开始用于远程抄表尝试,然后可以在此连接具有适当接口的GSM调制解调器。另一个应用是企业家可以使用RS-485监控电能消耗,在与电力公司达成协议后,他们可以根据自己的需要使用此接口进行周期性抄表。F9Dednc

F9Dednc

PCB的上部可以看到用作RS-485光隔离的4N35光耦。F9Dednc

F9Dednc

PCB的底部覆盖了工频变压器,这对设备的使用寿命是好事。我本来还想着是开关电源SMPS,但电源变压器更好。变压器有两个6V左右的输出,这也就解释了为什么PCB上层会有两个整流桥。F9Dednc

F9Dednc

光隔离和RS-485 BL3085收发器的其余部分位于附加板上。F9Dednc

F9Dednc

测量分流器焊接在PCB上,并焊接了电流端子,然后这个小电阻会根据流过表计的电流给出一个电压。F9Dednc

F9Dednc

支持MCU运行的电池如下,这里采用的是非典型的CR2354(560mA)电池。F9Dednc

F9Dednc

还有一个附加模块,上面有第二个M430F449 MCU,可能只负责通信,例如实现频繁抄表而不会干扰测量过程?我不确定为什么会以这种方式解决,但我知道在旧的解决方案中,频繁抄表可能会影响表计的运行。也许这方面有一些规定?F9Dednc

如果有哪位知道为什么这里会使用两个MCU,请告诉我。F9Dednc

F9Dednc

这就是电子式电表内部的样子。一些解决方案,例如两个MCU或一个磁场传感器,让我感到惊讶。考虑到CAT III万用表内部的外观,我预计永久连接到电网的该设备,内部会更加安全。F9Dednc

你有没有机会看看其他表计的内部,你觉得这个设计怎么样?F9Dednc

(原文刊登于EDN姊妹网站elektroda.pl,参考链接:Wnętrze elektronicznego licznika energii elektrycznej 12EA5rn/1 PAFAL,由Franklin Zhao编译。)F9Dednc

责编:Franklin
本文为电子技术设计原创文章,未经授权禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 英伟达惨遭背刺,这个SDK让AMD平台也能运行CUDA 近日,AMD正式推出了HIP SDK,这是ROCm生态系统的一部分,基于开源ROCm解决方案,HIP SDK使消费者可以在各类GPU上运行CUDA应用,为专业和消费级GPU提供CUDA支持。
  • 电池能用三十年?美国Ener Venue称推出革命性电池技术 三元锂离子电池的理论寿命约为800次循环,磷酸铁锂约为2000次,而钛酸锂据说可以达到1万次循环,也就是说常规普通人使用的锂离子电池每天完全充放电三次,最多也就能用上几年的时间。虽然相较于铅酸电池200-300次的循环寿命来说,这已经是很大幅度的提升了,但现在有一家公司宣称他们的电池可以充放电30000次,每天充放电三次,能用30年。
  • 测试中比友商温度低14度,一加天工散热系统怎么做到的? 7月27日,一加在2023年ChinaJoy上发布了全球首创的散热技术,即航天级三维立体散热系统“天工散热系统”,这是一加的又一次新的尝试,让我们一起来了解一下。
  • 后来居上,美光宣布已出样业界首款HBM3 Gen2内存 7月26日,美光宣布推出业界首款8层24GB HBM3 Gen2内存芯片,是HBM3的下一代产品,采用1β工艺节点,目前该款美光内存芯片正在向客户提供样品。
  • 韩国造世界首个室温超导体,闹剧还是新的未来? 7月22日,韩国的一个科研团队在预印本网站arXiv平台上上传了两篇论文,声称发现了世界上首个常压室温超导体,这种材料是一种改性铅磷灰石名为LK-99,超导临界温度在127摄氏度,即400K以上,而且在常压下就具备超导性。
  • TI无线MCU创新方案,助力用户加速拥抱物联网 7月21日,由AspenCore主办的“2023全球MCU生态发展大会”在深圳罗湖君悦酒店隆重举行,特邀请到MCU领域的领军企业之一德州仪器(TI)参加了“无线MCU分论坛”,论坛上,TI无线产品工程师魏天华分享了主题为“创新型无线解决方案,助力不断发展的互联世界”的演讲,为现场观众带来了TI最新的无线MCU系列,以及对于这一市场的深刻思考。
  • 降低侵入式风险,清华开发出“入耳式”脑机接口 近日,清华大学研究团队宣布开发出一种名为SpiralE BCI的脑机接口,该器件采用“入耳式”设计,使用者只需要将器件插入耳道,即可读取相应脑电波信息,侵入性远远低于其他的侵入式脑机接口设备。
  • TETRA标准被曝存在后门漏洞,1分钟内就能被破解 TETRA是由ETSI制定的开放性无线数字集群标准,据称该技术标准是世界上最安全、最可靠的无线电通信标准之一。而就在近日有研究人员发现该标准存在着多个安全漏洞,可以暴露通过该标准传输的敏感数据。
  • 网传iPhone 15将采用叠层电池,这是一种什么电池技术? 根据推特用户@RGcloudS的爆料,苹果的下一代手机iPhone15系列可能会采用叠层电池技术,以提高能量密度和延长使用寿命,那这所谓的叠层电池技术到底是怎么一回事呢?
  • 中国首款量子计算机操作系统,本源司南PilotOS正式上线 近日,据安徽省量子计算工程研究中心的消息,本源司南PilotOS客户端终于正式上线。PilotOS客户端是本源量子完全自主研发的一款一站式学习与开发平台,用户可以直接进行本地量子计算编程,不需要联网使用,实现用户对量子计算软件服务“打开即用”,助力量子计算编程“小白”顺利成为量子计算编程开发者。
  • 立足实际客户应用场景,无线MCU让世界更加智能、互联 2023年7月21日,由AspenCore主办的“2023全球MCU生态发展大会”在深圳罗湖君悦酒店隆重举行,邀请德州仪器、Microchip、意法半导体、欧米智能等知名企业和众多专家学者参加了“无线MCU分论坛”,一同探讨无线MCU的无限可能。
  • 点燃倍频紫外激光,中国创制世界首例全波段相位匹配晶体 日前,中国科学院新疆理化技术研究所成功创制一种新型非线性光学晶体——全波段相位匹配晶体,成为目前世界上首例实现全波段双折射相位匹配的紫外/深紫外倍频晶体材料。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了