广告

了解采集内存的重要性

2021-06-29 Arthur Pini  阅读:
数字化仪和示波器最重要的规格是带宽和采样率。采集内存长度不是首要规格,但它确实会显著影响带宽和采样率。采集内存的大小会影响仪器的采样率、最大记录长度和处理速度。设置内存的大小代表了始终存在的工程权衡之一。

数字化仪和示波器最重要的规格是带宽和采样率。采集内存长度不是首要规格,但它确实会显著影响带宽和采样率。zDaednc

包括数字化仪和示波器在内的数字化仪器,在捕获到数据后会将其存储在仪器的采集内存中。该内存位于仪器的数字化仪之后,并以数字化速率运行。采集内存的大小会影响仪器的采样率、最大记录长度和处理速度。设置内存的大小代表了始终存在的工程权衡之一。zDaednc

从基础开始,示波器或数字化仪的最大采样率必须大于该仪器模拟带宽的2倍。这是主导所有数字化仪器的奈奎斯特准则的声明。由于前端频率响应通常具有有限的滚降,因此将采样率设置为高于标称带宽的两倍,就可以最大限度地减少这些潜在带外信号的混叠。通常,数字化仪器所使用的最小采样率与带宽比至少为2.5:1。zDaednc

采集记录长度,即采集信号的持续时间,与所用采集内存的长度成正比,可以用以下公式来表示:zDaednc

Trec = N * tS = N/fSzDaednc

其中:zDaednc

Trec是采集信号的持续时间,以秒(s)为单位;zDaednc

N是采集内存的长度,以样本(S)为单位;zDaednc

tS是采样周期(s/S),以秒/样本(s/S)为单位;zDaednc

fS是采样率,也即采样周期的倒数,以样本/秒(S/s)为单位。zDaednc

采集的持续时间等于内存样本数或点数乘以采样周期或除以采样率。zDaednc

大多数示波器中的采集内存都是以模块的形式并以1、2、2.5和5的倍数来提供的;这样的设置与互补可用的采样率相结合,就可以使每格时间设置成为1、2和5的倍数。其目的是通过计算格点数并将其乘以易于计算的因子,从而在屏幕上轻松读取时间测量结果。zDaednc

随着示波器每格时间设置的增加,采集时间增加,内存也就增加,采集和持续时间也就成比例增加。当内存长度达到其最大限制时,增加记录长度的唯一方法是降低采样率,如图1所示。zDaednc

zDaednc

图1:此图显示了以最大内存长度作为参数,采样率随每格时间设置的变化情况。zDaednc

该图显示,在最大采样率为10GS/s的情况下,增加设备的每格时间设置,可使采样率保持在最大值,直到达到最大采集内存。进一步增加每格时间设置则会导致采样率下降。图中显示了最大内存长度为50MS、5MS和500kS的图形。显而易见并且值得注意的是,随着采集时间的增加,可用的采集内存越多,最大采样率可保持的时间就越长。zDaednc

一旦采样率开始下降,用户就必须了解仪器的有效带宽。数字化仪器的有效带宽是模拟带宽或采样率的一半中的较小者。因此,以1GS/s采样率运行的1GHz示波器,其有效带宽就为500MHz。任何高于500kHz的信号分量都会被混叠。还要记住,仪器的时间分辨率现在降低了。如果要对下降时间等与时间相关的参数进行准确测量,则精度可能会受到影响。如果测量边缘上只有几个样本,则该边缘的斜率就难以确定。zDaednc

下面来看一个通过设置内存使用来最大化采样率,从而改进测量结果的示例。这里设置了一个最大采样率为10GS/s的示波器来采集UART信号的多个数据包,如图2所示。zDaednc

zDaednc

图2:以10MS的记录长度获取UART信号的三个数据包。用光标读取数据包间距为43.8s,数据包长度为2ms。在此10ms/格时基的设置下,采样率已降至100MS/s。zDaednc

将示波器时基设置为10ms/格,在使用10MS内存时,其采样率已降低至100MS/s。此设置的有效带宽是采样率的一半,即50MHz。zDaednc

请注意,大部分波形都被数据包间的“死区时间”所占用。提高采样率的一种方法是消除数据包间的死区时间,这可以通过以序列模式采集信号来实现。这样可以对采集内存进行分段并仅捕获数据包,从而消除大部分死区时间并减少所使用的内存量。下面将示波器设置在序列模式下,并使用相同的2.5MS总内存,捕获三个段,每个段的持续时间为5ms,如图3所示。将内存长度减少到2.5MS的效果是将采样率从100MS/s提高至500MS/s。zDaednc

zDaednc

图3:使用序列采集模式来减少使用的内存并提高采样率。采样率已提高到500MS/s。zDaednc

由于信号带宽约为14MHz,因此在任一采样率下,信号似乎几乎没有差异,但如果查看信号下降时间的测量结果,则会有更明显的差异(图4)。zDaednc

下降时间是在两种采样率下测量的。以100MS/s采集的波形在边缘有大约6个样本,而以500MS/s采集的波形在边缘有30个样本。所得测量结果显示均值相差约10%。关键指标是,在500MS/s下采集的数据的标准差为573ps,而另一测量结果显示的标准差为1.7ns。标准差衡量了测量值关于平均值的分布,它是衡量测量不确定性的良好指标。基本上,以较高采样率进行的测量具有较小的不确定性。请记住,采样率直接随采集内存长度而变化。zDaednc

zDaednc

图4:对两种不同采样率(100MS/s和500MS/s)下的下降时间测量结果进行比较,结果表明,在500MS/s下进行的测量具有较低的标准差。zDaednc

无论我们的仪器有多少内存,都会遇到测量时没有足够内存直接进行测量的情况。在这种情况下,可能有必要将测量分解为单独的计时阶段。图5是具有高频分量和低频分量的波形示例。zDaednc

zDaednc

图5:这是入口门遥控器的初始测量结果,它使用390MHz载波的开关键控来编码识别信息。zDaednc

图中的顶部迹线是以10GS/s数字化的初始脉冲。同一波形的放大视图(迹线Z2)是底部网格中显示正弦波的红色迹线。参数P2测得的频率为390MHz标称值。当在从顶部算起的第二条迹线中以5ms/格采集整个波形时,问题就开始了。zDaednc

该采集的放大迹线出现在从顶部算起的第三条迹线中,以100μs/格显示。请注意,包络与第一次采集相同。但是有一个区别:该迹线的放大图(Z3,也即底部网格中的蓝色迹线)显示的却是频率为110MHz的参差不齐的正弦波。即使最大内存长度为25MS,25ms采集也只能处理500MS/s的采样率。zDaednc

500MS/s不大于390MHz载波频率的两倍,这显然成问题。这就是为什么载波的频率看起来是110MHz,它是混叠的。采样是种混频操作,390MHz载波与500MS/s采样率混合后就会发生下变频,产生110MHz的差值,即混叠载波频率。zDaednc

所需的测量类型可以分为两类。第一类是RF测量,主要包括测量载波频率。第二类是评估低频调制。第一类测量可以通过单独采集RF突发并测量载波来进行,就像使用顶部迹线和频率参数P2所做的那样。zDaednc

第二组测量可以对包含完整消息的混叠信号来进行。这样做可行,是因为信号是非常窄的频带,只在大约390MHz有能量。可以对混叠信号实现峰值检测,而已解调信号包络可提供有关编码及载波选通特性的信息。分析结果如图6所示。zDaednc

zDaednc

图6:对信号包络进行解调和测量,需要测量已解调信号包络的启动时间、衰减时间和宽度。包络宽度的直方图验证了串行编码中使用了三个不同的脉冲宽度。zDaednc

采集到的波形显示在顶部网格中。它包含一个RF载波,并由貌似经过脉宽调制的信号进行开关键控。通过对采集到的信号进行峰值检测,可以恢复调制信号。峰值检测是通过获取已调射频信号的绝对值,然后对其进行低通滤波来实现的。数学迹线F1执行这一处理,它将绝对值与增强分辨率(ERES)低通滤波器结合在一起。这显示在从顶部开始的第二条迹线中。从顶部算起的第三条迹线显示了已解调信号叠加在已调载波上。请注意已解调信号跟踪RF信号的程度。zDaednc

现在对提取的已调信号进行测量,包括上升时间和下降时间以及第一个脉冲的宽度,并对串行数据流中的所有21个脉冲重复这些测量。上升时间和下降时间代表键控载波的启动时间和衰减时间。底部网格中脉宽测量值的直方图显示只有三个不同的脉冲宽度500μs、1ms和1.5ms。zDaednc

由于内存有限,即使示波器在采集到完整信号时无法呈现载波,但仍然可以从信号中获取到大量信息,但我们必须了解正在发生的事情。zDaednc

采集内存长度是一项重要规格,它会影响数字化仪器的采样率和带宽。内存长度决定了任何固定采样率下的采集持续时间。内存长度越长,在最高采样率下可支持的每格时间设置就越大。一旦使用了最大内存量,进一步增加每格时间设置将导致采样率降低,从而导致仪器的有效带宽降低。zDaednc

Arthur Pini是一名技术支持专家和电气工程师,在电子测试和测量领域拥有50多年的经验。zDaednc

本文授权编译自EDN姐妹网站Planet Analog,原文参考链接:Understanding the importance of acquisition memory。由赵明灿编译。)zDaednc

本文为《电子技术设计》2021年7月刊杂志文章,版权所有,禁止转载。免费杂志订阅申请点击这里zDaednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 绿色出行:英飞凌CoolSiC功率模块可将有轨电车的能耗降 为了满足绿色出行的要求,业界必须以提高能源效率为主要目标,进行新技术开发。顺应这一发展趋势,英飞凌科技即将推出采用XHP 2封装的CoolSiC MOSFET和.XT技术的功率半导体,这款专门定制的解决方案旨在满足轨道交通市场的需求。
  • COVID-19疫苗追踪和监测的完整解决方案 疫苗是拯救生命的药物,但许多疫苗需要在低温下运输、密封和包装,来区别于仿制品,这些都需要以可承受的成本进行。Axzon开发了一种独特的标签解决方案和物流管理系统,旨在提供必
  • 益莱储将NI解决方案租赁服务扩展到中国 为亚太区客户选择方案提供更大的灵活性,使客户从资本支出转向运营支出模式
  • 泰克在其屡获大奖的高性能示波器中增加5G功能 工程师可以使用最新5G软件,在一台示波器上诊断复杂的信号交互,减少麻烦的仪器之间关联需求。
  • VIAVI携手罗德与施瓦茨推出O-RAN无线单元一致性测试解 O-RU测试管理器结合双方的测试解决方案,提供统一的用户体验
  • 选择正确的设备监测电池温度 电池包需要达到足够的功率密度(W/kg), 才能分配充分的电流来实现电动汽车的加速指标。 同时, 高功率密度 (Wh/kg),才能实现更长的续航时间或续航里程。
  • 美国商务部宣布对俄罗斯出口限制:在技术上孤立并削弱其 美国时间2022 年 2 月 24 日,美国商务部通过其工业和安全局 (BIS) 对俄罗斯进一步入侵乌克兰作出回应,实施了一系列全面的严格出口管制措施,这些管制措施将严重限制俄罗斯获得其需要维持的技术和其他物品其侵略性的军事能力。
  • 【AFG专题系列72变】之二:无刷电机调速器我可以 电子调速器是将直流电转化成交流电驱动无刷电机的一种电子装置,简称电调。它具有调速和功率驱动两种基本功能。通常电调有3组功率场效应晶体管 (MOSFET)构成桥型驱动电路。由于电路中总是存在传输线路的差异、分布电容差异、器件延时差异等不确定因素影响,常常使得桥臂上下两只MOSFET管的导通或截至时间不同步。极易出现同一个桥臂中上下两只MOSFET出现短暂同时导通的情况,从而出现短时大电流脉冲。这个问题降低了电源效率,也容易使驱动管发热损毁。本文通过使用任意波发生器对电子调速器进行驱动和测试,在精准测量出各路桥臂时延特性后,经过驱动软件优化让电路达到了最佳控制效果。泰克AFG31000任意波发生器可产生任意脉冲波,具有双通道输出和极高的相位控制能力,对精准测量起到了非常关键的作用,也为本文实现高效驱动器起到了重要作用。
  • 颠覆数字视觉:意法半导体率先推出50万像素深度图像ToF 突破性的 FlightSense 3D 传感器增强智能手机、AR/VR设备和消费类机器人的成像能力;在40nm堆叠晶圆上实现专有间接飞行时间 (iToF) BSI 技术,新传感器集高性能、低功耗和小尺寸于一身
  • 【AFG专题系列72变】之一:电源倍频我来也 电源行业有多种放大电路,研发测试中需要模拟输出各种信号以验证电路的完整性。客户是一家电源研发企业,需要对倍频积分电路进行模拟测试,输出5V、5kHz的方波信号激励电路,产生20kHz的三角波信号,验证电路的稳定性。
  • MVG为SGS提供汽车天线测量和OTA测试设备 Microwave Vision Group(MVG)为其亚太地区的汽车测试服务提供第一款符合5GAA VATM标准的汽车无线(OTA)测试设备。
  • AirPods电池老化续航衰退?B站大神教你无损换电池 AirPods 1、2代已上市几年,老化的主要是1、2代旧型号。使用几年后频频出现电量不准、一充就满、一用就没电、频繁断开等问题均源于电池老化。百度搜索“airpods 换电池”后,出现数之不尽的相关帖子,B站搜索关键词“airpods 换电池”,相关更换电池教程多达数十篇,可见已有非常多玩家实现更换电池满血复活。这里以B站综合排序最前的UP主“他禾大爷”的经验做介绍。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了