首页
资讯
模拟/混合信号
嵌入式系统
处理器/DSP
测试与测量
电源管理
通信
PCB设计
EDA/IP/IC设计
医疗电子
消费电子
汽车电子
工业电子
手机设计
物联网
人工智能
EDN原创
创新/创客/DIY
FPGA
eeTV
技术杂谈
芯品汇
图集
全部标签
技术
实例
芯品汇
资源
视频中心
在线研讨会
EE直播间
资料下载
小测验
供应商资源
视频工作室
ASPENCORE学院
社区
论坛
博客
问答
下载中心
评测中心
面包芯语
技术文库
E币商城
社区活动
ASPENCORE学院
活动
2024第五届中国国际汽车电子高峰论坛
IIC Shenzhen 2024
2024MCU及嵌入式大会
2024国际AIoT生态大会
IIC Shanghai 2024
IIC Shenzhen 2023
2023第四届中国国际汽车电子高峰论坛
IIC Shanghai 2023
2023全球 MCU 生态发展大会
2023(第四届)国际 AIoT 生态发展大会
更多行业及技术活动
工程师社群活动
专题
用于电路分析和设计的SPICE仿真指南
QSPICE电子电路仿真系列教程
电力电子笔记
数字电子基础
技术子站
电源和信号完整性测试技术中心
泰克智能汽车测试技术中心
福禄克红外热像仪免费试用
芯源半导体MCU技术中心
英飞凌电容感应方案中心
器件射频和材料介电常数测试
是德科技 新能源汽车三电测试技术中心
西门子EDA 3D IC设计解决方案
车载总线测试和解码
Microchip 视频与资源中心
NI最新射频仪器专区
西门子EDA中心
汽车电子专题
E聘
NEW
IIC Shanghai 2025
IC设计成就奖投票
标题
简介
内容
作者
全部
标题
简介
内容
作者
全部
首页
资讯
模拟/混合信号
嵌入式系统
处理器/DSP
测试与测量
电源管理
通信
PCB设计
EDA/IP/IC设计
医疗电子
消费电子
汽车电子
工业电子
手机设计
物联网
人工智能
EDN原创
创新/创客/DIY
FPGA
eeTV
技术杂谈
芯品汇
技术
实例
芯品汇
资源
视频中心
在线研讨会
EE直播间
资料下载
小测验
供应商资源
ASPENCORE学院
社区
论坛
博客
问答
下载中心
评测中心
面包芯语
技术文库
E币商城
社区活动
ASPENCORE学院
活动
2024第五届中国国际汽车电子高峰论坛
IIC Shenzhen 2024
2024MCU及嵌入式大会
2024国际AIoT生态大会
IIC Shanghai 2024
IIC Shenzhen 2023
2023第四届中国国际汽车电子高峰论坛
IIC Shanghai 2023
2023全球 MCU 生态发展大会
2023(第四届)国际 AIoT 生态发展大会
更多行业及技术活动
工程师社群活动
专题
用于电路分析和设计的SPICE仿真指南
QSPICE电子电路仿真系列教程
电力电子笔记
数字电子基础
技术子站
电源和信号完整性测试技术中心
泰克智能汽车测试技术中心
福禄克红外热像仪免费试用
芯源半导体MCU技术中心
英飞凌电容感应方案中心
器件射频和材料介电常数测试
是德科技 新能源汽车三电测试技术中心
西门子EDA 3D IC设计解决方案
车载总线测试和解码
Microchip 视频与资源中心
NI最新射频仪器专区
西门子EDA中心
汽车电子专题
E聘
×
杂志声明
我司杂志提供免费订阅,任何第三方平台的赠送或售卖行为均未获得我司授权,我司保留追究其法律责任的权利!
广告
5G手机,为什么射频前端愈发重要?
时间:
2022-10-11
作者:
射频学堂
阅读:
分享
扫码分享到好友
海报分享
在 4G 之前,蜂窝无线电设计是一件非常简单的事情。传统的射频前端仅支持少数不同的射频,而这反过来只需要少量射频组件和天线来支持下行链路和上行链路功能。但随着行业开始 4G 的长期演进,很明显,RF 前端设计必须能够快速扩展,以适应全球蜂窝应用中可用的无线电频率的增长。
6z0ednc
十年前,蜂窝设备的射频 (RF) 设计开始发生根本性变化,这将为当前射频前端的复杂性铺平道路 - 调制解调器和天线之间的智能手机部分。世界正在经历从多种支离破碎的 3G 全球蜂窝技术到统一的 4G 无线标准的重大转变,该标准被称为长期演进或 LTE。这是改善蜂窝通信以最佳利用无线电频谱的漫长旅程的第一步。
4G LTE 的出现需要一套新的无线技术来利用可用的蜂窝无线电频谱,并最有效地利用分散的频谱资源。为实现这一目标,RF 工程师从根本上重新设计了 RF 前端的无线信令和传输架构,增加了主要功能,例如载波聚合、高阶调制和多输入多输出 (MIMO) 天线。通过结合越来越多的无线电频谱来改善整体无线连接和性能,移动设备中的 RF 设计变得相当复杂。
这是三部分系列中的第一部分,旨在帮助理解 RF 前端设计之谜以及使 5G 智能手机成为可能的技术。它探讨了为什么手机中的 RF 前端设计变得如此复杂,并回顾了 RF 前端架构,说明了芯片组行业如何管理这种复杂性并持续改善用户体验。
射频前端之谜
在 4G 之前,蜂窝无线电设计是一件非常简单的事情。传统的射频前端仅支持少数不同的射频,而这反过来只需要少量射频组件和天线来支持下行链路和上行链路功能。但随着行业开始 4G 的长期演进,很明显,RF 前端设计必须能够快速扩展,以适应全球蜂窝应用中可用的无线电频率的增长。
今天,在 4G 和 5G 手机中看到支持超过 20 个频段以及多个天线的射频前端设计并不罕见。与 3G 相比,4G 的初始复杂性在 RF 前端部分造成了几何增长。随着行业向 5G 过渡,RF 设计挑战变得更加复杂,这给设备制造商提出了一项艰巨的任务,即阻止 RF 复杂性呈指数级增长。事实上,我们的研究表明,在智能手机的任何部分,射频前端的物料清单 (BOM) 成本上升幅度最大。其他功能领域的成本和复杂性仅略有增加,而 RF 前端的成本和复杂性都增加了。
6z0ednc
最新的 5G 射频前端设计必须满足更多的网络要求,以支持新的、更宽的 5G 频率带宽,以及越来越多的 LTE 频段,因为大多数 5G 网络推出时使用的是非5G 的独立实施。这意味着两个不同的无线电同时处于活动状态,一个 5G 和另一个 4G,具有独特且独立的射频链。
5G 标准还有助于引入新的、以前未使用的频谱,从 24 GHz 开始,通常称为毫米波频谱。这些频段提供 1 GHz 以上的频谱,从而实现超过 7 Gbps 的峰值无线数据速度。
但是为了实现这些速度,设备设计牺牲了信号覆盖范围。毫米波 5G 的接收和传播在实际应用中更加困难,这迫使使用波束成形和波束控制等新型无线电技术来产生可用的毫米波 5G 连接。
随着 5G 增加了手机中无线电和 RF 组件的数量,创建支持三代蜂窝无线电技术的功能性 RF 前端变得更加困难。
下表说明了 3G、4G 和 5G 网络中支持的频段数量的增加,这导致了 RF 复杂性的失控增长。对比过去 11 年来三星 Galaxy 系列的第一代设计,我们可以看到,每一代新的网络都带来了更多的支持 RF 频段,增加了对 RF 前端的要求,以跟上增加的带宽。这意味着手机制造商需要大量投资来设计功能更强大的射频前端,控制成本膨胀并在设备上使用有限的空间。
一直以来,这些 RF 复杂性在产品文献和消费者隐藏的 RF 设计挑战中都被掩盖了,因为这些复杂性会使产品信息变得混乱。智能手机用户不需要或不想了解这种日益增加的复杂性;他们希望他们的手机可以在任何地方使用,无论他们住在哪里。
为什么要这么复杂?
为了实现一代又一代网络和用户体验的数量级改进,需要更多的无线电频谱。但令人不快的事实是,RF 前端设计无法随着对电话无线电需求的增加而有效扩展。由于频谱是一种稀缺资源,政府必须对射频频谱进行配给,从而造成当今大多数蜂窝网络无法满足 5G 的预期需求。
毫米波技术是一种解决方案,但它的传播效果不佳,因此 RF 设计人员不能仅仅依靠它来解决频谱紧缩问题。他们需要解决最广泛的 RF 支持,并构建有史以来引入消费设备的最强大的蜂窝无线电设计。
从低于 6 GHz 到毫米波,现代无线电和天线设计必须使用和支持所有可用频谱。并且由于频谱持有不一致,频分双工和时分双工功能必须结合在单个射频前端设计中。此外,通过绑定不同频率的频谱来帮助增加虚拟带宽管道的载波聚合增加了 RF 前端的要求和复杂性。
6z0ednc
此外,无线局域网和 Wi-Fi 不断发展的功能增加了另一层复杂性,因为蜂窝和 Wi-Fi 信号必须分开,否则会有大量 RF 干扰的风险。最新的 Wi-Fi 6E 标准增加了 6 GHz 频谱。因此,射频前端必须具有先进的滤波技术,以避免射频信号重叠。
由于 5G 中 RF 需求呈指数级增长,智能手机 RF 前端设计变得如此复杂。今天的消费者期望制造商解决所有这些 RF 挑战,但并不完全了解我们是如何达到这种复杂程度的。换句话说,如果要实现 5G 的承诺,就无法摆脱 RF 前端的复杂性。
现有 5G 手机中的射频前端设计
今天的射频挑战表现在很多方面。领先旗舰设备中的物理天线数量从典型的 3 或 4 个显着增加到 12 个以上——不包括毫米波天线模块。下图突出显示了现代设计中所需的天线数量不断增加,此外还需要结合毫米波天线。
从 4G 过渡到 5G,需要更多天线来支持 4x4 MIMO 天线并覆盖从 600 MHz 到 7 GHz 的各种 sub-6 GHz 频率。天线调谐器的使用有助于将现有天线重新用于多个频率,减少物理天线的数量。虽然这很有帮助,但 5G 的非独立实施需要数以万计的载波聚合组合和毫米波频谱的特殊规定,需要多个无线电链。这增加了 RF 前端的组件数量、成本和复杂性。5G 智能手机中 5G 射频前端设计不断增长和不断发展的需求难以摆脱;行业能做的最好的事情就是管理这种复杂性。
由于智能手机中的 RF 前端要应对 RF 需求呈指数级增长的局面,因此它也被要求在设备中占用更少的空间。换句话说,它被困在岩石和坚硬的地方之间,试图平衡这两种相互冲突的需求。
那么 5G 射频前端如何在保持紧凑的同时变得更加强大呢?答案是通过电子集成。下面是一个前端模块的图像,它用作输入信号的 RF 接收路径或链。模块有助于减小印刷电路板上电子元件的尺寸,而这在 5G 智能手机中的空间非常有限。
RF 前端从天线开始,到达 RF 收发器,最后到达调制解调器。天线和调制解调器之间有更多的射频技术在起作用。
下图试图简化领先 5G 设计中的许多射频组件。对于这些部件的供应商来说,5G 提供了一个扩大市场的黄金机会,因为 RF 前端内容与增加的 RF 复杂性成比例地增长。
例如,射频滤波器市场有望在 5G 射频前端实现最高增长率,因为对更多射频的支持意味着需要过滤更多射频。博通、Qorvo、Skyworks Solutions、村田和高通等射频部件制造商都将从这个不断增长的市场中获益。
然而,在 5G 手机中提供这些 RF 前端组件是一回事,提供解决方案来驯服 RF 复杂性并使一切正常工作是完全不同的球赛。为满足这一新兴市场需求,传统芯片制造商高通公司整合了一系列射频组件和技术,为智能手机制造商提供经过验证的射频调制解调器到天线解决方案。这种新颖的策略为设备生态系统带来了重大价值,因为并非所有制造商都希望投入大量 RF 工程资源来设计自己的 RF 前端。
6z0ednc
责编:Ricardo
文章来源及版权属于射频学堂,EDN电子技术设计仅作转载分享,对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。如有疑问,请联系
Demi.xia@aspencore.com
阅读全文,请先
射频学堂
学无线,学射频,就来【射频学堂】!射频学堂专注于无线通信射频技术学习和科普,致力于传播无线射频知识,分享各种学习资料,助力全体无线射频人……
进入专栏
分享到:
返回列表
上一篇:
真我BudsT100真无线耳机拆解,蓝牙5.3延迟最低可至88ms
下一篇:
射频设计中的“Bypass”与“Decoupling”
微信扫一扫
一键转发
最前沿的电子设计资讯
请关注
“电子技术设计微信公众号”
推荐内容
兴趣推荐
2024年十大充电行业并购事件
2024年,在科技快速发展与能源结构转型的推动下,充电行业步入关键发展阶段。这一年,充电行业并购活动频繁,企业借
评测:猛玛LARK M2无线麦克风
猛玛LARK M2隐藏式纽扣麦克风是一款无线领夹式麦克风,为全面了解猛玛LARK M2隐藏式纽扣麦克风的实际表现,我爱
展望2025汽车行业:AI、智驾的两大战役打响
随着智能驾驶技术的快速迭代,2025年将成为AI智驾技术发展的关键年份。在这个被定义为“AI智驾元年”的新时代
拆解报告:TOZO Open EarRing开放式耳机
TOZO Open EarRing开放式耳机在外观方面,采用了不同于上代的全新设计···
2024年德国汽车市场:纯电补贴退坡,中国品牌遭遇挫折
2024年,德国汽车市场在总体销量下降的同时,燃料类型和品牌格局的变化清晰地反映了市场转型的趋势···
评测:小度S108蓝牙耳机
为全面了解小度S108蓝牙耳机的实际表现,我爱音频网对其进行了详细的测试与体验,主要为外观设计、使用体验和数
由 Arm 驱动的 NVIDIA Project DIGITS 为数百万开发者带来
鉴于 AI 创新的步伐空前加快,行业需要确保开发者在云端及边缘侧均能获得高性能算力,从而直接获得更多的新功
无酸纸有了,我来教你搞定变色油墨!
变色油墨背后隐藏着怎样的技术原理呢?今天,我们就一起来揭开变色油墨的神秘面纱!
菲亚特王朝动摇:2024年意大利汽车市场新格局
展望 2025 年,意大利市场可能围绕新能源转型和品牌间的差异化竞争展开激烈博弈。对于中国品牌而言,如何进一步
拆解报告:联想thinkplus 100W USB-C快充数据线
联想这款USB-C数据线长度为1米,线缆两头为双层塑料壳设计,并印有thinkplus字样。实测线缆支持100W功率传输,适
长城汽车第51周,销量1.93万
哈弗凭借深厚底蕴与多元布局稳扎稳打;坦克剑走偏锋,深挖越野小众市场;WEY 高端化道阻且长但曙光初现;欧拉则亟待
2025年第3周:全球最快四足机器人发布
2025年将成为机器人产业的关键时间点,业内预期27年人形机器人出货量可达50~100万台。从技术进步到供应链成熟
第51周各品牌卖了多少车?热门车型销量回顾
年度第51周,12月第3周:乘用车的销量约为 65.7万台,同比增长了 3.86%,环比上涨 0.05%。
蔚来的AES有什么不同?用AI做智能安全
蔚来智能安全辅助系统的持续进化,标志着智能驾驶行业从单一技术创新向系统化、多维度发展的转变···
从一个简单的公式,谈一下射频设计的几个要点
如果你注意观察周边的现实世界,你会发现,其实射频已经深入到人类生活的方方面面,深入到我们衣食住行的每一个单
拆解报告:希辉达35W带伸缩线氮化镓充电器
希辉达35W带伸缩线氮化镓充电器本质是配备双USB-C接口,但将其中一个设计成时下受欢迎的伸缩线,免去了用户日常
揭秘储能高端局!你管这叫充电宝?
相比起高压储能,低压储能离我们的日常生活更近。或许,此刻你正端详着自己 20000 毫安的充电宝陷入沉思:低压储
拆解报告:OPPO磁吸移动电源5000mAh
OPPO磁吸移动电源5000mAh拥有10W的无线和有线快充能力,支持12W最大输入功率,外观精美轻薄,配备电源开关键和LED
英伟达多维进击汽车业务:自动驾驶时代已至
黄仁勋在CES 2025上的演讲明确传递了英伟达在汽车领域的战略雄心:以领先的计算能力和生态布局,引领自动驾驶和
德系豪华车第51周销量
2024年12月16日至12月22日,德系高端豪华车市场迎来销量高峰···
使用MSO 5/6内置AWG进行功率半导体器件的双脉冲测试
在本文中,宽禁带功率器件供应商Qorvo与Tektronix合作,基于实际的SiC被测器件 (DUT),描述了实用的解决方案··
嵌入式Rust:我们如今身处何方?
Rust对于一般应用开发来说很有意义,但对于嵌入式软件团队来说真的有意义吗?Rust如今的情况如何,它是否就是大家
毫米波雷达与音频技术重塑汽车驾乘新体验
汽车行业的发展正由两大创新领域主导:更为精准可靠的车内感知系统和高质量音频系统。传统方法如增加传感器或
631.2亿美元的市场,创新制造工艺将为柔性电子带来什么?
柔性电子设备的新型制造技术正在迅速涌现。有些人可能想知道它们是否比传统方法更好,以及它们什么时候会商业
广告
热门评论
最新评论
换一换
换一换
广告
热门推荐
广告
广告
EE直播间
更多>>
在线研讨会
更多>>
学院
录播课
直播课
更多>>
更多>>
更多>>
更多>>
广告
最新下载
最新帖子
最新博文
面包芯语
更多>>
热门TAGS
产业前沿
消费电子
技术实例
EDN原创
电源管理
新品
汽车电子
处理器/DSP
通信
传感器/MEMS
模拟/混合信号/RF
工业电子
无线技术
人工智能
制造/工艺/封装
EDA/IP/IC设计
安全与可靠性
测试与测量
查看更多TAGS
广告
×
向右滑动:上一篇
向左滑动:下一篇
我知道了