广告

πΩ,1/(2π),eΩ等非标准电阻有哪些"妙用"?

2017-06-27 Rick Chapman 阅读:
本设计实例讨论了生成非标准阻值的一些电路,包括πΩ电阻和1/(2π)倍数的电阻。未来还会有eΩ电阻、普朗克常数电阻和阿伏加德罗常数电阻。

我一直没有停止设计模拟电路,因为担心计算机只会流行一时。最近的一个设计项目需要一个阻值为πΩ的电阻,我很惊讶目前在市场上竟然买不到现成的。图1的电路显示了我如何将3.16Ω和536Ω这两个1%精度的电阻并联起来实现πΩ阻值。这个简单的设计实例实现的阻值是3.1415Ω,与设计目标完全相符。这种生成非标准阻值的新方法在许多应用中会找到用武之地。J1Sednc

DI1_F1_201707

图1:合成的πΩ电阻。J1Sednc

J1Sednc

我们的新公司Transcendental Passives提交了双电阻电路及先进的三电阻电路的专利申请。公司的第一个产品就是上述πΩ电阻——该器件可以用在很多产品中,比如电子卷尺,可以通过测量圆形物体的直径报告其周长。J1Sednc

我们的第二个产品线是阻值为1/(2π)倍数的电阻。在设计工作于整数频率的RC振荡器时,这些电阻非常有用。举例来说,图2显示的维恩电桥振荡器的工作频率就恰好在10Hz。J1Sednc

DI1_F2_201707

图2:10Hz精密维恩电桥振荡器。J1Sednc

J1Sednc

目前我们正在设计一个阻值为e Ω的电阻(2.718Ω),这种电阻在对数放大器和时序电路中非常有用。图3显示的是一个三电阻原型电路,该电路还没完成实验室测试。注意,三电阻电路的复杂度要高一些,它可以用更低精度、更低成本的元件合成想要的电阻,适用于大批量产品。J1Sednc

DI1_F3_201707

图3:e Ω原型。J1Sednc

J1Sednc

未来若干年我们的发展路线图包括阻值为普朗克常数的电阻,用于开发本底热噪声(kTB)为1的雷达;以及阻值为阿伏加德罗常数的电阻,用于设计能称出原子数量的秤。这些产品的芯片级版本也在开发中。这种基本概念还可以延伸到电容领域,不过电感市场可能太小了,无法支持这种先进的设计应用。J1Sednc

《电子技术设计》2017年7月刊版权所有,谢绝转载。J1Sednc

20160630000123J1Sednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • DC/DC转换器功率降额规范中的挑战和替代方法 当今电子系统正在将更多的功能集成到更小尺寸中,但功能增多使功耗也会增加。因此,为了应对这一趋势,提供系统电压轨的DC/DC转换器必须以更小的封装实现更高的功率,即具有更高的“功率密度”。虽然目前的转换器设计可以具有非常高效率,但仍必须消散巨大热量以将关键组件保持在其最高额定温度以下。
  • 从技术角度分析,GaN和SiC功率器件上量还欠什么? 氮化镓(GaN)和碳化硅(SiC)这两种新器件正在推动电力电子行业发生重大变化,它们在汽车、数据中心、可再生能源、航空航天和电机驱动等多个行业取得了长足的进步。在由AspenCore集团举办的PowerUP Expo大会上,演讲嘉宾们深入探讨了包括GaN和SiC在内的宽禁带(WBG)器件的技术优势以及发展趋势。
  • Matter的核心:定义下一阶段智能家居的互操作性和无线技 在当今完全互联的世界里,使用各种智能家居的生活环境意味着需要同时与多种无线协议进行交互。照明系统、供暖和制冷系统、安全系统、娱乐系统——现在家庭生活的方方面面几乎都可以通过无线方式进行增强和控制。尽管无线技术的优势众多,但如今家庭中的无线连接并不是一帆风顺的。即便对于深谙各种先进技术的智能家居爱好人士来说,家庭网络中处理各种不兼容的无线协议也构成了挑战。
  • 学子专区—ADALM2000实验:跨阻放大器输入级 本次实验旨在研究简单跨阻放大器的输入级配置。
  • 用TinyML开始设计——开发评估套件 本文中展示的开发套件和评估板得到一些流行的机器学习库和用于 TinyML 工作流程资源的支持,包括用于微控制器的 Google TensorFlow Lite 和 Edge Impulse,因而它们能够成为您第一个项目的理想起点。
  • 自耦变压器SPICE建模 自耦变压器又称为单绕组变压器,可分升压变压器及降压变压器;它是一种只有一组线圈的变压器,其中一个线圈作为另一线圈的一部份...
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告
    向右滑动:上一篇 向左滑动:下一篇 我知道了