广告

πΩ,1/(2π),eΩ等非标准电阻有哪些"妙用"?

2017-06-27 Rick Chapman 阅读:
本设计实例讨论了生成非标准阻值的一些电路,包括πΩ电阻和1/(2π)倍数的电阻。未来还会有eΩ电阻、普朗克常数电阻和阿伏加德罗常数电阻。

我一直没有停止设计模拟电路,因为担心计算机只会流行一时。最近的一个设计项目需要一个阻值为πΩ的电阻,我很惊讶目前在市场上竟然买不到现成的。图1的电路显示了我如何将3.16Ω和536Ω这两个1%精度的电阻并联起来实现πΩ阻值。这个简单的设计实例实现的阻值是3.1415Ω,与设计目标完全相符。这种生成非标准阻值的新方法在许多应用中会找到用武之地。peeednc

DI1_F1_201707

图1:合成的πΩ电阻。peeednc

peeednc

我们的新公司Transcendental Passives提交了双电阻电路及先进的三电阻电路的专利申请。公司的第一个产品就是上述πΩ电阻——该器件可以用在很多产品中,比如电子卷尺,可以通过测量圆形物体的直径报告其周长。peeednc

我们的第二个产品线是阻值为1/(2π)倍数的电阻。在设计工作于整数频率的RC振荡器时,这些电阻非常有用。举例来说,图2显示的维恩电桥振荡器的工作频率就恰好在10Hz。peeednc

DI1_F2_201707

图2:10Hz精密维恩电桥振荡器。peeednc

peeednc

目前我们正在设计一个阻值为e Ω的电阻(2.718Ω),这种电阻在对数放大器和时序电路中非常有用。图3显示的是一个三电阻原型电路,该电路还没完成实验室测试。注意,三电阻电路的复杂度要高一些,它可以用更低精度、更低成本的元件合成想要的电阻,适用于大批量产品。peeednc

DI1_F3_201707

图3:e Ω原型。peeednc

peeednc

未来若干年我们的发展路线图包括阻值为普朗克常数的电阻,用于开发本底热噪声(kTB)为1的雷达;以及阻值为阿伏加德罗常数的电阻,用于设计能称出原子数量的秤。这些产品的芯片级版本也在开发中。这种基本概念还可以延伸到电容领域,不过电感市场可能太小了,无法支持这种先进的设计应用。peeednc

《电子技术设计》2017年7月刊版权所有,谢绝转载。peeednc

20160630000123peeednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • 用量热法测量电动汽车转换器的功率损耗 与用功率表进行电学测量相比,另一种解决方案是基于量热法的解决方案,它能够实现高精度而无需与转换器进行任何电气连接。
  • 优化宽禁带材料器件的半桥和门驱动器设计 信号从测试点到示波器的连接
  • 基于LoRa的智能路灯解决方案,提升公共服务质量,助力智能 智能路灯作为智慧城市、智慧乡村及智慧园区的重要组成部分,在提供高质量的公共服务、降低成本和实现可持续发展等方面具有重要作用。目前,智能路灯在全球各地具有广泛的需求,同时中国厂商利用LoRa等创新物联网技术和云计算,已经成为该领域内的重要创新和产业发展力量。
  • 快速估算电容器的介电吸收 有几种方法可以用来估计或测量电容器的介电吸收值。经典的直接测量法定义准确但却非常耗时。本文所述的电路与其要求一致,但却可以将计时缩短到几秒钟。
  • 降低开关电源噪声影响的两种方法 尽管开关电源设计可能需要在某些直流电源轨上实现极低的噪声,但其通常在功耗和运行时间方面却更要做系统级的考虑。这些领域包括敏感的低电平RF前端以及精确的高分辨率A/D转换。
  • 安全闪存——网联汽车和工业应用中安全问题的解决之道 随着汽车和工业市场中自动化和互联革命的推进,边缘节点正在迅速成为网络攻击的目标。软件更新、远程捕获诊断数据以及远程端点与基础设施之间的通信变得越来越普遍,因此容易遭受网络攻击和其它安全威胁。 随着半导体技术的进步,工艺尺寸不断缩小,将闪存嵌入到包含硬件安全模块(HSM)的MCU中也变得越来越困难,因此外置闪存的需求不断增加。当闪存外置于MCU时,存储的代码和数据将更加容易受到攻击,所以设备必须设计安全启动流程和其它基础设施,以确保存储和检索的内容可以信赖。 本文探讨的是,当闪存外置于拥有HSM模块的MCU时,但仍然保持硬件信任根时,新一代安全设备的设计会面临哪些挑战和安全要求。本文涉及的其他内容还包括:加密安全存储、快速安全启动、安全固件远程更新和管理合规。
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告
    向右滑动:上一篇 向左滑动:下一篇 我知道了