向右滑动:上一篇 向左滑动:下一篇 我知道了
广告

关于3GPP里的NOMA技术,我们需要关注哪几点?

时间:2019-03-21 阅读:
提到NOMA技术,就是non-orthogonal multiple-access的简称,技术Geek 们一定不陌生:作为一大探究热点正在5GNR方面如火如荼的展开着……

提到NOMA技术,就是non-orthogonal multiple-access的简称,技术Geek 们一定不陌生:作为一大探究热点正在5GNR方面如火如荼的展开着,优点有二:zCyednc

  1. 上行的链路级的流量以及支持过载的能力增强了;
  2. 在给定系统中断的情况下的包到达率增强了。

NOMA技术主要针对的是上行的非正交多接入,至少对mMTC的场景是这样的。zCyednc

为了对抗非正交传输之间的干扰,发送端会采用一些扩频机制(线性或非线性,有或无稀疏)和交织技术常常被使用以提升性能。zCyednc

关于3GPP里面关于NOMA主要聚焦于以下几点,我总结了一下,有兴趣的同学参见38.812zCyednc

  • NOMA可以应用于grant-based的和grant-free的传输。
  • NOMA的优势,特别是在grant-free传输的情况下,可能完成各种各样的用例,包括:eMBB、URLLC、mMTC。
  • 在RRC-CONNECTED状态下,它节省了调度请求过程,并假设UE已事先完成了上行同步。
  • 在RRC-INACTIVE状态下,数据可以在没有RACH程序的情况下传输。
  • 这么节省信令开销的方式自然会节省能源消耗,减少延迟,提高系统容量。
  • NOMA可以同时使Uu 口和side link受益。

稍微解释一下关于grant-based的和grant-free的概念zCyednc

举个栗子~zCyednc

在LTE的传统网络当中 ,我们假设一个上行接入的过程是这样的:zCyednc

011ednc20190320zCyednc

这是一个grant—based的过程,也就是说在UE向基站发了scheduling request(SR)之后要等待基站的scheduling  grant (SG)才能对UE分配资源。那么对应的,grant-free的网络中handshaking的过程被省略了。zCyednc

继续回到NOMA的话题:zCyednc

Transmit Processing:zCyednc

012ednc20190320zCyednc

Receiver Processing:zCyednc

013ednc20190320zCyednc

关于NOMA 主要的讨论点:zCyednc

  • HARQ,包括传输方案、反馈方案和组合方案。
  • 链路自适应MA签名分配/选择。
  • 同步和异步操作。
  • 正交和非正交多通道之间的自适应。
  • 对于链路级别和系统级评估,比较的基准是OFDM的多接入。
  • 对于现实中的TX/RX建模,包括潜在的PAPR问题、信道估计误差、功率控制精度、碰撞等。

对NOMA阵营中具体细节,每个厂家站不同的技术,如下表所示:zCyednc

014ednc20190320zCyednc

日本5GMF白皮书对未来网络的构想是这样的:zCyednc

015ednc20190320zCyednc

如果想达到这样一个打破传统通信网络藩篱,面向智能的IoT网络,关于如何减少时延等图中几大指标这样问题的研究就是停不下来的,因此关于NOMA,上面提到的全都是待研究的热点问题,3GPP会议在进行,议题的结论也在不断更新,敬请期待~zCyednc

Ref:zCyednc

[1] H. Al-Hamadi and R. Chen, “Trust-based decision making for health IoT systems,” IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1408–1419,2017.zCyednc

[2] C. Pan, H. Mehrpouyan, Y. Liu, M. Elkashlan, and A. Nallanathan,“Joint pilot allocation and robust transmission design for ultra-dense user-centric TDD C-RAN with imperfect CSI,” IEEE Transactions on Wireless Communications, vol. 17, no. 3, pp. 2038–2053, Mar. 2018.zCyednc

[3] M. Masoudi, A. Azari, E. A. Yavuz, and C. Cavdar, “Grant-free radio access IoT networks: Scalability analysis in coexistence scenarios,” in 2018 IEEE International Conference on Communications (ICC). IEEE,2018, pp. 1–7.zCyednc

[4] H. Huawei, “R1-164036 multiple access for UL small packets transmission,”in 3GPP TSG RAN WG1 Meeting 85. 3GPP, 2016.zCyednc

[5] Y.Shan,C.Peng, L.Jin, “ZTE,Uplink Multiple Access Schemes for 5G: A Survey,”2017zCyednc

(来源:网优雇佣军 ;作者嘉飞猫师太zCyednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • 5G频段扩容,毫米波成“兵家必争之地” 近期,著名苹果分析师郭明錤发布报告称,2020年苹果将发布5款新iPhone,支持毫米波/sub-6GHz技术,给一批关注5G毫米波应用的人士带来了小小的惊喜。国际标准化组织3GPP把5G频段分为FR1频段和FR2频段,FR1频段就是范围为450MHz—6GHz的sub-6GHz频段,而FR2频段则是24.25GHz—52.6GHz的毫米波频段。因此,全球5G部署的频段只有两种,sub-6GHz和毫米波。
  • 2020年,5G落地往哪儿落? 目前5G展示的能力只是冰山一角,真正的5G大规模场景开发或应用的到来,仍需较长时间。2019年是5G商用元年,那么2020年会不会被称为“5G行业落地元年”呢?
  • 2020:新时代元年,有哪些技术值得期待? 2020是一个新十年的开端,对于未来十年改变我们生活的产品和技术来说,今年将是影响深远的一年。因此,让我们看看在意法半导体 (ST) 眼中,未来有哪些新趋势。
  • 麻省理工研发超级信号放大器,可将Wi-Fi放大10倍 麻省理工学院计算机科学和人工智能实验室(CSAIL)研究人员近日研发出提高信号强度的巨大的天线墙,一款名为RFocus smart surface原型产品。
  • 实用风席卷EMC/SIPI年度大会 着重探讨电磁兼容性(EMC)、信号完整性(SI)和电源完整性(PI)的IEEE EMC+SIPI 2019年度大会与往年的最大不同是有更多的实际展示和技术研讨会。在这次会议上,EMC基础知识、实用技术内容和学术论文之间首次找到了平衡。此外,此次大会更加关注年轻的专业人士,因为一些“资深人士”开始退休,这些技能需要传给下一代。
  • 越南Viettel宣称开发出5G基站,实则“换皮‘爱立信 日前, 由越南军方控制的运营商 Viettel 表示他们首次在自研5G gNodeB设备上打通了5G视频通话。对此很多业内专家表示持怀疑态度。新京报也表示Viettel的5G“国产化”不过一层皮。
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告