向右滑动:上一篇 向左滑动:下一篇 我知道了
广告

S参数究竟是什么?

时间:2019-06-04 作者:德州仪器 阅读:
传统上,ADC信号和时钟输入都采用集总元件模型来表示。但是对于RF采样转换器而言,其工作频率已经增加至需要采用分布式表示的程度,那么原有的方法就不适用了。

现代高速模数转换器(ADC)已经实现了射频(RF)信号的直接采样,因而在许多情况下均无需进行混频,同时也提高了系统的灵活性和功能。

传统上,ADC信号和时钟输入都采用集总元件模型来表示。但是对于RF采样转换器而言,其工作频率已经增加至需要采用分布式表示的程度,那么原有的方法就不适用了。

本系列文章将从三个部分入手,说明如何将散射参数(也称为S参数)应用于直接射频采样结构的设计。

起决定性作用的S参数

S参数就是建立在入射微波与反射微波关系基础上的网络参数。它对于电路设计非常有用,因为可以利用入射波与反射波的比率来计算诸如输入阻抗、频率响应和隔离等指标。而且由于可以用矢量网络分析仪(VNA)直接测量S参数,因此无需知晓网络的具体细节。

图1所示的是一个双端口网络的例子,其入射波量为ax,反射波量为bx,其中x是端口。在该讨论中,我们假设被测器件是线性网络,因此适合采用叠加法。

 

ti-sparameters-1.JPG

图1:双端口网络波量

通常情况下,在测量所有端口上的反射波时,VNA一次只刺激一个端口(通过将入射波推到该端口)。而且所测量的这些波量是非常复杂的,因为每个波量都有相应的振幅和相位。因此,这个过程需要针对每个测试频率下的每个端口不断重复。

对于双端口器件,我们可以从测量数据中形成四个有意义的比率。这些比率通常用sij表示,其中i表示反射端口,而j表示入射端口。正如上文提到的,假设一次只刺激一个端口,那么其他端口的入射波为零(用系统的特性阻抗Z0来表示终止)。

方程式1至4适用于四个双端口S参数。S11和S22分别表示端口1和端口2的复阻抗。S21表示传输特性,端口1为输入,端口2为输出(S12与之相同,但端口2为输入,端口1为输出)。

S11 = b1/a1,a2 = 0                    (1)

S21 = b2/a1,a2 = 0                    (2)

S12 = b1/a2,a1 = 0                    (3)

S22 = b2/a2,a1 = 0                    (4)

对于单向器件而言,如放大器(端口1为输入,端口2为输出),可以用S11表示输入阻抗,用S21表示频率响应,用S12表示反向隔离,用S22表示输出阻抗。数据转换器也是一种单向器件,但其端口2通常为数字输出,这对测量和解读都会产生一定的影响。

将S参数扩展到多端口器件和差分器件

可以将S参数框架扩展到任意数量的端口,有意义的参数数量为2N,其中N表示端口数量。许多集成电路由于振荡和共模抑制能力增强而具有差分输入和输出。射频采样ADC(如TI的ADC12DJ5200RF)通常具有差分射频输入和差分时钟输入。我们还可以进一步扩展S参数框架,以支持差分端口。

如图2所示,对于差分端口来说,我们必须区分共模波和差模波。两种模式具有相同的入射振幅,但差模入射波具有180度的相移,而共模入射波具有相同的相位。

ti-sparameters-2.JPG

图2:差模波和共模波

对于端口之间没有反馈的线性器件来说,可以采用叠加法,根据单端S参数测量(在任何给定时间内,只有一个端口具有处于活动状态的入射波)来计算出差共混合模式S参数。现代高性能VNA还支持用差模或共模波同时刺激两个端口。

测量数据转换器S参数所面临的挑战

数据转换器的半模拟半数字特性给测量S参数带来了挑战。VNA不能直接与数据转换器的数字总线相连接,因此需要采用专门的方法来进行测量。

本系列文章的第二部分将介绍测量德州仪器射频采样数据转换器S参数的方法。第三部分将讨论如何在射频采样数据转换器系统的设计中使用S参数。

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • 用1%电阻就能构建属于自己的差动放大器 在一种相对常见的情况下,1% 电阻器和一个较好的运算放大器便可以构建一个完全合格的差动放大器。当我们在负载“低侧”的情况下使用一个分流器进行电流测量时,共模电压常常非常小……
  • 模拟电路教程:电流源 什么是电流源?基本电流源其实就是向负载提供电流的电路。本设计实例简单介绍了下面几种电流源:称为电流镜的双晶体管电流源、Widlar电流源、Howland电流源,以及采用分立放大器和电阻器的低成本双极性电流源。
  • 差动放大器:良好匹配电阻器不可或缺的器件 在单片IC设计过程中,我们常常会竭尽所能地对内部组件进行精确的匹配。例如,精确匹配运算放大器的输入晶体管,旨在获得低失调电压。如果我们必须使用属于我们自己的离散晶体管运算放大器,则我们会得到 30mV 甚至更高的失调电压……
  • 迷失在线圈里 这是一个“你有多少资源,便抱多大希望”的故事。虽然作者在电路设计中选择的电感器体积有点大,但LTspice的蒙特卡罗分析表明其受元件公差影响不大,而且现代铁氧体电感器的磁导率通常温度系数都很低,结果满足了功率预 算。所以,看到不起眼的电感器,别急着走开,当功率预算很紧时,它可能很有用!
  • Spectrum View 在电源网络调试 及PLL故障诊断场景的应 前三篇文章主要介绍了Spectrum View的功能特点、相关理论知识,及其在多域联合分析上的应用,本文将通过常见的电源网络调试及PLL故障诊断等测试场景进一步描述Spectrum View的应用。
  • 运算放大器的输入和输出电压范围到底有多大? 我们常常会收到一些与电源有关的应用问题,询问我们运算放大器的输入和输出电压范围到底有多大。既然大家存在这方面的疑惑,那么我们就利用这篇文章来为大家解疑释惑……
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告