广告

5G超级上行是什么?

2019-07-18 10:20:11 网优雇佣军 阅读:
4G时代主要面向2C消费者,网络能力主要以下行流量为主。直到近几年,抖音等高速率的上行需求业务才逐渐出现。

4G时代主要面向2C消费者,网络能力主要以下行流量为主。直到近几年,抖音等高速率的上行需求业务才逐渐出现。Yx3ednc

5G时代万物互联,与2C的eMBB不同,2B行业应用的海量数据将自下而上的产生,在传统下行大带宽的基础上,提出了上行大带宽、低时延的新需求。比如无人机、4K高清直播等需要40Mbps上传+20-40ms时延,无人采矿车需要多路30Mbps上传+30ms时延等。Yx3ednc

001ednc20190718Yx3ednc

这些种类繁多的2B新业务的需求,让5G的挑战接踵而至。Yx3ednc

5G时代新挑战

上行带宽与时延的挑战

5G NR的双工模式包括FDD和TDD。中国5G频段3.5G和2.6G,均采用TDD模式。Yx3ednc

FDD叫频分双工,上行和下行分别在两个独立的、对称的频率信道上传送。这就好像是双向车道,两个方向的车辆各行其道,互不干扰;Yx3ednc

TDD叫时分双工,上行和下行在同一频率信道上传送,两者通过时间间隔来分离。这就好像是潮汐车道,需要分时段来控制车辆通行方向。Yx3ednc

002ednc20190718Yx3ednc

5G初期,3.5G上下行时隙配比主要针对eMBB场景设计,典型采用7:3或8:2等,即整体资源70%的时间用于下行,30%的时间用于上行,因此下行单用户速率可以达到1.5Gbps,上行只有280Mbps;而手机收下行数据时,反馈ACK/NACK需要等到上行时隙到来才能发送,因此造成7:3配比下最大时延约4.2ms,平均时延约2.5ms。Yx3ednc

随着5G 2B业务发展,下行体验不变的情况下大幅提升上行体验并缩短时延,是对网络提出的新的需求和挑战。Yx3ednc

上行覆盖的挑战

无线网络覆盖的短板在上行。基站功率可达200W,基站向手机发送信号时,下行覆盖距离不用担心。但手机的发射功率只有0.2W,手机向基站发射信号时,上行覆盖距离有限。Yx3ednc

003ednc20190718Yx3ednc

这就好比基站发射信号像用高音大喇叭喊话可以传几公里,手机发射信号像靠嘴喊只能传几百米,双方通信的距离就只能以手机发射信号的距离为准。 Yx3ednc

而且频段越高,覆盖距离越短,3.5G频段相比4G主力频段1.8G/2.1G频段覆盖少50%。Yx3ednc

怎么办?Yx3ednc

目前业界主要的解决方案有两种,一种是采用TDD +FDD的载波聚合技术(CA),一种是将FDD低频的上行频段做补充的技术(SUL)。其中:Yx3ednc

上行CA:在3.5G基础上增开低频通道做上行,让流量同时承载于高频段+低频段,提升覆盖和体验。但CA技术存在两大问题:一是两个频段上行只能各占一个通道,导致3.5G频段无法充分发挥双通道大带宽优势,同时每个通道功率小于20dbm,导致上行收缩3dB,二是终端产业发展缓慢,目前无TDD+FDD上行载波聚合的终端并无任何实现路标。Yx3ednc

SUL:在远点3.5G上行无覆盖的地方增开低频做上行,高频段上传输5G下行,在低频上传输5G上行,从而提升5G上行覆盖。SUL虽然解决了上行覆盖问题,但用户在近中点依然只使用3.5G的上下行频谱,对于近中点用户体验和时延无任何改善。Yx3ednc

还有没有更好办法?几天前,中国电信和华为在MWC2019上海展发布会上联合提出了一种新的解决方案,叫5G超级上行。Yx3ednc

超级上行,光听名字就让人感觉很牛掰的样子,它的背后到底是啥原理?Yx3ednc

啥叫超级上行? 

提升上行带宽 缩短网络时延

5G TDD 3.5G上行带宽不够,就用FDD上行带宽来补充,通过TDD+FDD的方式合力提升上行吞吐率,并缩短时延。Yx3ednc

这就相当于加开了一条FDD上行车道,从此上行车辆不用分时段限行,全时段畅通无阻。Yx3ednc

004ednc20190718Yx3ednc

与上行CA和SUL不同的是,当3.5G频段传送上行数据时,FDD上行不传送数据。这样可以充分利用3.5G 100M大带宽和终端双通道发射的优势提升上行吞吐率(3.5G 100Mhz+终端双通道发射 VS  FDD 20Mhz+终端单通道发射),同时确保每个通道最大发射功率达到23dBm,提升3dB覆盖。Yx3ednc

当3.5G传送下行数据时,FDD传送上行数据,从而实现了FDD和TDD时隙级的转换,保证全时隙均有上行数据传送。Yx3ednc

从时域图上来看,它们就是这样子的:Yx3ednc

005ednc20190718Yx3ednc

从速率上分析,3.5G 64QAM上行峰值约为280Mbps,2.1G 64QAM上行速率约为90Mbps。超级上行打开后,理论上行峰值速率可达到280+0.7*90=343Mbps,速率提升20%。Yx3ednc

从时延上分析,笔者从发布会上的信息了解到,由于ACK/NACK反馈更加及时,可以使TDD的时延从最大4.2ms降低到2ms以内,时延降低60%。Yx3ednc

增强上行覆盖

3.5G上行覆盖受限,当终端远离基站,离开3.5G上行覆盖范围时,超级上行可以使用FDD低频段,来补齐TDD上行覆盖短板,从而扩大覆盖范围。Yx3ednc

006ednc20190718Yx3ednc

超级上行在提升上行速率的同时,也会更及时准确的对下行数据进行反馈,带来下行速率的提升。Yx3ednc

从发布会现场展示的数据来看,采用超级上行后,手机在覆盖边缘的上行速率提升高达4-5倍。Yx3ednc

简单的讲,所谓超级上行,就是将TDD和FDD协同、高频和低频互补、时域和频域聚合,充分发挥3.5G大带宽能力和FDD频段低、穿透能力强的特点,既提升了上行带宽,又提升了上行覆盖,同时缩短网络时延。它是无线通信首个时频结合的技术,是面向2B/2C市场的最优速率/时延解决方案,是无线通信又一个里程碑式的创新,具有跨时代的意义。Yx3ednc

附:几种上行增强技术关键指标对比Yx3ednc

007ednc20190718Yx3ednc

面向5G时代,远程控制、远程医疗、智慧安防、智能工厂、视频直播等各种各样的5G应用都需上行低时延、大带宽能力来支撑。毫不夸张的讲,只有提升网络上行能力,才能真正实现“5G改变社会“的梦想。Yx3ednc

当前超级上行解决方案需要从芯片、终端、基站等端到端能力支持,为此,中国电信在MWC上呼吁全产业链的合作伙伴共同参与技术验证、部署和应用,全力支持超级上行技术落地。Yx3ednc

(授权转发自网优雇佣军公众号Yx3ednc

  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 用水泥和炭黑制造储能超级电容器 一项新的研究表明,人类最普遍的两种历史材料,水泥和炭黑(类似于非常细的木炭),可能会成为新型低成本储能系统的基础。该技术可以在可再生能源供应出现波动的情况下使能源网络保持稳定,从而促进太阳能、风能和潮汐能等可再生能源的使用。
  • 一种用于电路板回收的新基材:遇水能溶 英国的Jiva Materials公司开发了一种新型的PCB基材Soluboard,这种基材是由天然纤维包裹在一种无卤的聚合物中制成的,与行业内经常使用的FR-4基材不同,这种材料只要在90摄氏度左右的热水中浸泡30分钟,就可以分层溶解···
  • 美国公司声称发现室温超导材料,被授予了高于室温的第二 位于美国佛罗伦萨州的Taj Quantum的公司在社交媒体宣布,被授予了高于室温的第二类超导体专利。据称,这种独特的 II 型超导体(专利号:17249094)可在较宽的温度范围内工作,包括远高于室温的温度,从约 -100° F (-73° C) 到约 302° F (150° C) - 这是一种特性这在超导体世界中并不常见。
  • 机器人版的ChatGPT,谷歌新模型泛化能力大幅提高 7月28日,Google DeepMind宣布以训练AI聊天机器人的方式训练了一款全新的机器人模型Robotic Transformer 2(RT-2),这是一种新颖的视觉-语言-动作(VLA)模型,可以从网络和机器人数据中学习,并将这些知识转化为机器人控制的通用指令。
  • 俄罗斯“贝加尔湖”基准测试对比英特尔和华为芯片,惨败 俄罗斯服务器处理器 Baikal-S 的开发人员将其性能与美国和中国的同类芯片进行了比较。涉及六个流行指标。
  • 英伟达惨遭背刺,这个SDK让AMD平台也能运行CUDA 近日,AMD正式推出了HIP SDK,这是ROCm生态系统的一部分,基于开源ROCm解决方案,HIP SDK使消费者可以在各类GPU上运行CUDA应用,为专业和消费级GPU提供CUDA支持。
  • 麻省理工发现新型量子磁铁释放电子潜力 研究人员发现了如何控制异常霍尔效应和贝里曲率来制造用于计算机、机器人和传感器的柔性量子磁体。
  • 如何用软件定义无线电实现更有效的核磁共振成像仪设计 在本文中,我们讨论了MRI的基本概念,以及如何将SDR集成到这些系统中以提高性能和功能。我们介绍了一些适用于MRI应用的SDR规范,以及对MIMO射频通道的支持。还讨论了让SDR成为高性能射频单元的原因,以及高信噪比和MIMO通道之间的高相位相干性。
  • 比科奇介绍其打造更加智能移动通信基础设施新愿景 比科奇在MWC上海世界移动通信大会期间介绍了其在引入人工智能(AI)等技术打造更加智能的移动通信基础设施方向的新愿景,包括致力于解决困扰行业的基站功耗等问题,以及人工智能技术与先进无线通信技术的结合等创新
  • 电池能用三十年?美国Ener Venue称推出革命性电池技术 三元锂离子电池的理论寿命约为800次循环,磷酸铁锂约为2000次,而钛酸锂据说可以达到1万次循环,也就是说常规普通人使用的锂离子电池每天完全充放电三次,最多也就能用上几年的时间。虽然相较于铅酸电池200-300次的循环寿命来说,这已经是很大幅度的提升了,但现在有一家公司宣称他们的电池可以充放电30000次,每天充放电三次,能用30年。
  • 测试中比友商温度低14度,一加天工散热系统怎么做到的? 7月27日,一加在2023年ChinaJoy上发布了全球首创的散热技术,即航天级三维立体散热系统“天工散热系统”,这是一加的又一次新的尝试,让我们一起来了解一下。
  • 万物电气化:探索绿色未来之路 在本文中,我们将重点介绍美国年度脱碳展望(ADP)2022报告中的一些重要发现。本报告着眼于实现净零经济的各种情景。我们在本文中重点关注的方法称为“中心情景”,它遵循到2050年实现净零排放的时间表。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了