向右滑动:上一篇 向左滑动:下一篇 我知道了
广告

5G超级上行是什么?

时间:2019-07-18 作者:网优雇佣军 阅读:
4G时代主要面向2C消费者,网络能力主要以下行流量为主。直到近几年,抖音等高速率的上行需求业务才逐渐出现。

4G时代主要面向2C消费者,网络能力主要以下行流量为主。直到近几年,抖音等高速率的上行需求业务才逐渐出现。

5G时代万物互联,与2C的eMBB不同,2B行业应用的海量数据将自下而上的产生,在传统下行大带宽的基础上,提出了上行大带宽、低时延的新需求。比如无人机、4K高清直播等需要40Mbps上传+20-40ms时延,无人采矿车需要多路30Mbps上传+30ms时延等。

001ednc20190718

这些种类繁多的2B新业务的需求,让5G的挑战接踵而至。

5G时代新挑战

上行带宽与时延的挑战

5G NR的双工模式包括FDD和TDD。中国5G频段3.5G和2.6G,均采用TDD模式。

FDD叫频分双工,上行和下行分别在两个独立的、对称的频率信道上传送。这就好像是双向车道,两个方向的车辆各行其道,互不干扰;

TDD叫时分双工,上行和下行在同一频率信道上传送,两者通过时间间隔来分离。这就好像是潮汐车道,需要分时段来控制车辆通行方向。

002ednc20190718

5G初期,3.5G上下行时隙配比主要针对eMBB场景设计,典型采用7:3或8:2等,即整体资源70%的时间用于下行,30%的时间用于上行,因此下行单用户速率可以达到1.5Gbps,上行只有280Mbps;而手机收下行数据时,反馈ACK/NACK需要等到上行时隙到来才能发送,因此造成7:3配比下最大时延约4.2ms,平均时延约2.5ms。

随着5G 2B业务发展,下行体验不变的情况下大幅提升上行体验并缩短时延,是对网络提出的新的需求和挑战。

上行覆盖的挑战

无线网络覆盖的短板在上行。基站功率可达200W,基站向手机发送信号时,下行覆盖距离不用担心。但手机的发射功率只有0.2W,手机向基站发射信号时,上行覆盖距离有限。

003ednc20190718

这就好比基站发射信号像用高音大喇叭喊话可以传几公里,手机发射信号像靠嘴喊只能传几百米,双方通信的距离就只能以手机发射信号的距离为准。 

而且频段越高,覆盖距离越短,3.5G频段相比4G主力频段1.8G/2.1G频段覆盖少50%。

怎么办?

目前业界主要的解决方案有两种,一种是采用TDD +FDD的载波聚合技术(CA),一种是将FDD低频的上行频段做补充的技术(SUL)。其中:

上行CA:在3.5G基础上增开低频通道做上行,让流量同时承载于高频段+低频段,提升覆盖和体验。但CA技术存在两大问题:一是两个频段上行只能各占一个通道,导致3.5G频段无法充分发挥双通道大带宽优势,同时每个通道功率小于20dbm,导致上行收缩3dB,二是终端产业发展缓慢,目前无TDD+FDD上行载波聚合的终端并无任何实现路标。

SUL:在远点3.5G上行无覆盖的地方增开低频做上行,高频段上传输5G下行,在低频上传输5G上行,从而提升5G上行覆盖。SUL虽然解决了上行覆盖问题,但用户在近中点依然只使用3.5G的上下行频谱,对于近中点用户体验和时延无任何改善。

还有没有更好办法?几天前,中国电信和华为在MWC2019上海展发布会上联合提出了一种新的解决方案,叫5G超级上行。

超级上行,光听名字就让人感觉很牛掰的样子,它的背后到底是啥原理?

啥叫超级上行? 

提升上行带宽 缩短网络时延

5G TDD 3.5G上行带宽不够,就用FDD上行带宽来补充,通过TDD+FDD的方式合力提升上行吞吐率,并缩短时延。

这就相当于加开了一条FDD上行车道,从此上行车辆不用分时段限行,全时段畅通无阻。

004ednc20190718

与上行CA和SUL不同的是,当3.5G频段传送上行数据时,FDD上行不传送数据。这样可以充分利用3.5G 100M大带宽和终端双通道发射的优势提升上行吞吐率(3.5G 100Mhz+终端双通道发射 VS  FDD 20Mhz+终端单通道发射),同时确保每个通道最大发射功率达到23dBm,提升3dB覆盖。

当3.5G传送下行数据时,FDD传送上行数据,从而实现了FDD和TDD时隙级的转换,保证全时隙均有上行数据传送。

从时域图上来看,它们就是这样子的:

005ednc20190718

从速率上分析,3.5G 64QAM上行峰值约为280Mbps,2.1G 64QAM上行速率约为90Mbps。超级上行打开后,理论上行峰值速率可达到280+0.7*90=343Mbps,速率提升20%。

从时延上分析,笔者从发布会上的信息了解到,由于ACK/NACK反馈更加及时,可以使TDD的时延从最大4.2ms降低到2ms以内,时延降低60%。

增强上行覆盖

3.5G上行覆盖受限,当终端远离基站,离开3.5G上行覆盖范围时,超级上行可以使用FDD低频段,来补齐TDD上行覆盖短板,从而扩大覆盖范围。

006ednc20190718

超级上行在提升上行速率的同时,也会更及时准确的对下行数据进行反馈,带来下行速率的提升。

从发布会现场展示的数据来看,采用超级上行后,手机在覆盖边缘的上行速率提升高达4-5倍。

简单的讲,所谓超级上行,就是将TDD和FDD协同、高频和低频互补、时域和频域聚合,充分发挥3.5G大带宽能力和FDD频段低、穿透能力强的特点,既提升了上行带宽,又提升了上行覆盖,同时缩短网络时延。它是无线通信首个时频结合的技术,是面向2B/2C市场的最优速率/时延解决方案,是无线通信又一个里程碑式的创新,具有跨时代的意义。

附:几种上行增强技术关键指标对比

007ednc20190718

面向5G时代,远程控制、远程医疗、智慧安防、智能工厂、视频直播等各种各样的5G应用都需上行低时延、大带宽能力来支撑。毫不夸张的讲,只有提升网络上行能力,才能真正实现“5G改变社会“的梦想。

当前超级上行解决方案需要从芯片、终端、基站等端到端能力支持,为此,中国电信在MWC上呼吁全产业链的合作伙伴共同参与技术验证、部署和应用,全力支持超级上行技术落地。

(授权转发自网优雇佣军公众号

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • 美国黑客发现4G 路由设备漏洞,中兴、TP-LINK被点名 据 BleepingComputer 美国时间8月12日报道, Pen Test Partners 研究人员 G Richter 就在今年的 DEF CON 黑客大会上分享了自己在一些 4G 路由设备上找到的安全漏洞。在他看来,“市场上现售的许多 4G 调制解调器与路由器非常不安全,一旦被不法分子利用,很容易导致个人信息泄露或受到命令执行攻击。”
  • 两款主流5G手机测速,同一地点速率差别高达47%!为什么? 近日在某运营商的5G网络中,笔者拿着不同的两款手机分别进行了测速。如下图所示,我们选择了四个不同的位置,测速结果都达到了900Mbps以上,确实让人直观的感受到了5G的速度之快!但是对比两款不同的手机测试结果时,却让人大跌眼镜,两款5G手机处于同样的位置,为什么速率差别高达47%,相当于有近一半的速率损失?现在5G手机也陆续上市了,我们是不是在选购5G手机时也要做足功课避免踩雷?
  • 华为5G芯片不如高通?拆解对比6款5G手机 日前,IHS Markit也发布了一份报告,报告中拆解了6款较早推出市场的5G手机,并详细对比了华为和高通两家芯片在工程上的差异。
  • 光学技术进展为量子运算铺路 为了满足越来越高的运算性能要求,业界不断挑战半导体制程技术极限,研究人员并开发出量子光源和光子二极管,可望为量子运算开启大门…
  • 工业4.0时代的数据与连接,是如何体现智能与AI的? 用一个词来总结工厂追求工业4.0的原因,那就是“效率”。或者说实现更低的成本,更简单的生产和运维,这成为实质上推动工业4.0发展的最重要动力……
  • 磁带存储“翻身”,“古董级”储存技术或成未来十年主流 随着5G、AI、IoT、自动驾驶等技术的崛起,无数随时产生着海量数据,对于存储和处理都提出了极高的需求,市场上还有一些强力的数据左证磁带单位出货量增加,以及有越来越多的数据量被储存在磁带上。
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告