广告

边缘AI大战一触即发

2019-11-05 11:06:11 Sally Ward-Foxton,EE Times特派记者 阅读:
一场边缘AI大战正悄悄展开...每一家处理器供货商都将机器学习视为「金鸡母」,积极地调整自家公司策略,竞相为这个具有最大商机的领域——边缘AI提供加速特定工作负载的解决方案...

过去两年来,人工智能(AI)已经从学术奇迹演变为全球重大趋势了。以某种形式呈现的机器学习(machine learning)即将彻底改变几乎所有领域——从消费者、汽车、工业到电子产业的每一个领域,并且正以未知的方式影响整个社会和我们的生活。rfgednc

事实上,对于产业来说,这表示每一家处理器供货商都将机器学习视为「金鸡母」。这一场战争已经开打,他们正积极调整自家公司策略,竞相为具有最大潜力的领域——数据中心以外的机器学习,或是边缘AI (AI at the edge)——提供可加速特定工作负载的理想解决方案。rfgednc

边缘AI拥有巨大的光明前景,因为它几乎适用于每一种电子装置,从无人驾驶车可在行驶中「看到」路上行人,到能够接收并响应语音命令的咖啡机等。需要在低延迟、数据隐私、低功耗和低成本之间任意组合的应用最终都将转移到边缘执行AI推论。rfgednc

值得注意的是,从下图Gartner提供的新兴技术发展周期报告(Hype Cycle for Emerging Technologies, 2019)来看,边缘AI (Edge AI)只不过是发展还不到5年时间的一个点。rfgednc

012ednc20191105rfgednc

Gartner提供的2019年新兴技术发展周期报告:Edge AI要「达到生产力成熟期」(plateau of productivity)大约还需要2-5年的时间。(来源:Gartner)rfgednc

AI推论的工作负载是特定的:它们需要对大量低精度资料进行大规模平行处理,而内存存取正成为一项瓶颈。大部份的处理器类型都在试图适应这些要求。rfgednc

目前主要的技术是GPU——实际上应该说是当今一家公司的细分市场。很幸运地,GPU的单指令多数据(SIMD)架构本来是为了加速计算机绘图而开发的,如今也顺势演变成为极其适用于AI工作负载。辉达(Nvidia)正乘着这一波浪潮前进,致力于开发AI超级计算机,用于数据中心、自动驾驶等以及甚至是小型的边缘装置。rfgednc

其他业者也想在这个市场分一杯羹。长久以来习于加速数学算法的FPGA供货商开始完善其产品组合,以因应边缘AI处理的需求。赛灵思(Xilinx)采用特定领域架构(domain-specific-architecture)的概念,将可编程逻辑与其他运算类型结合在一起,为新的工作负载客制化数据串流。同时,莱迪思半导体(Lattice)则瞄准在低功耗装置中进行图像处理。rfgednc

还有许多新创公司的新架构成功达阵,从内存处理器(processor-in-memory;PIM)技术(如Mythic、Syntiant、Gyrfalcon)到近内存运算(near-memory computing,如Hailo);从可编程逻辑(Flex Logix)到RISC-V核心(Esperanto、GreenWaves);以及从极其微小(Eta Compute)到超大规模(Cerebras、Graphcore)等领域。这些新创公司大多数都在为边缘打造AI。但是,当他们开始与Nvidia和Intel等巨擘正面竞争时,是否还会有足够的利基市场足以支持他们?时间会说明一切。rfgednc

此外,还有许多新创公司从另一个方向着手解决这个问题:调整AI工作负载以便在微控制器(MCU)等传统硬件上更有效地执行。诸如PicoVoice和Xnor等公司正在寻找新方法来利用现有装置的指令集,以执行矩阵乘法。rfgednc

结合Google在TensorFlow Lite上的成果——一款可将机器学习模型缩小到适合MCU的编译程序——毫无疑问地,这将为不需要连接因特网即可进行推论任务的语音启动装置等应用开启大门。rfgednc

嵌入式开发人员在面对这些新型加速器芯片组时,必须学习如何使用它们。软件是这一挑战的重要组成部份。更传统的CPU、MPU和MCU显然在此具有领先优势。rfgednc

尽管要打造一个围绕着新软件平台的开发社群并非不可能,但这毕竟并不容易实现的。Nvidia花了十年的时间打造其GPU软件平台——CUDA,才实现当今的成果。任何想要进入这一领域的业者都需要打造工具库与工具,以及透过会议与论坛来教育开发人员。但这些都可能让新创业者的有限资源更加吃紧。rfgednc

灵活性是成功秘诀的另一个要素。尽管当今的图像处理模型有赖于卷积神经网络(CNN),但不同类型的神经网络也适于像语音识别等其他应用,而且学术界还一直在提出新的神经网络概念。先进的网络可能还需要更复杂的数据串流方案。为了加速当今CNN而开发硬件的一个风险在于可能导致过于专业化,而无法加速未来的网络平台。因此,AI工作负载的本质应该被视为一项不断变化中的目标,在灵活性和性能之间取得适当的平衡,这对于未来的发展至关重要。rfgednc

这个领域的战争才刚刚开打。最后的赢家将属于那些选择适合自家公司的利基市场并为其努力打拼、投资软件堆栈以及教育产业、并在此快速发展的产业中保持灵活性的公司。当然,还必须要能以合理的价格进行。rfgednc

(原文发表于ASPENCORE旗下EDN姐妹媒体EETimes,参考链接:Companies Clash over AI at the Edge,编译:Susan Hong)rfgednc

 rfgednc

本文为电子技术设计原创文章,未经授权禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 商务部暂停天然砂对台湾地区出口,台积电难受了 据EDN电子技术设计了解,商务部网站8月3日早晨8点发布最新消息,表示将从即日起暂停天然砂对台湾地区出口。不少网友认为暂停天然砂对台湾地区的出口,此举将严重影响台湾的建筑业,实则影响不仅仅如此。台湾地区天然砂进口量的90%以上来自大陆,而台湾芯片占台湾2021年出口额的34.8%。网友称商务部暂停天然砂对台湾地区出口是捏到了台湾半导体制造业的七寸。
  • 华盛顿大学首创用人体热能为可穿戴电子设备供电 从健康和健身追踪器到虚拟现实设备,可穿戴电子产品已成为我们日常生活的一部分,但找到持续为这些设备供电的方法是一项挑战。华盛顿大学的研究人员开发了一种创新的解决方案:首创的柔性、可穿戴热电设备,可将体热转化为电能。
  • 深圳允许完全自动驾驶车辆上路,主驾无需坐人 据EDN电子技术设计引援央视财经报道,从8月1日开始,《深圳经济特区智能网联汽车管理条例》正式实施,智能网联汽车列入国家汽车产品目录或者深圳市智能网联汽车产品目录,这也让深圳成为了国内首个允许L3级别自动驾驶车辆合法上路的城市。
  • 理想ONE高速起火烧成光架,其1.2T三缸增程器曾被指隐藏 近期,网络平台上发布了一段理想ONE在行驶过程中,车辆出现起火的视频内容。现场拍摄的灭火后图片显示,该轿车过火后仅剩骨架,车辆前部增程器位置受损严重,车辆尾门已经在过火后从车身主体脱落。此前,曾有国内汽车媒体对一台行驶了10万公里的理想ONE的东安1.2T三缸增程发动机进行拆解,被指隐藏暗病。
  • 上海微系统所使用石墨烯纳米带研制出世界上最小尺寸的 非易失性相变随机存取存储器(PCRAM)被认为是大数据时代新兴海量存储的有希望的候选者之一。然而,相对较高的编程能量阻碍了 PCRAM 中功耗的进一步降低。利用石墨烯的窄边接触可以有效降低每个电池中相变材料的活性体积,从而实现低功耗运行。
  • 可解决工业自动化和IIoT挑战的MCU 工业自动化和工业物联网(IIoT)设计人员的性能要求不断变化。就MCU而言,他们希望获得更快的处理速度、更多的内存、更好的连接性和更多的安全功能。
  • 我国建成开通5G基站数达185.4万个 工信部近日透露,截至2022年6月底,中国5G基站数达到185.4万个,其中二季度新增基站近30万个,已建成全球规模最大、技术领先的网络基础设施,实现“县县通5G、村村通宽带”。。
  • Nothing Phone 1 官方承认品控缺陷,但拆解后有新发现 前一加手机联合创始人裴宇创立的 Nothing 公司在国外备受关注,但Nothing Phone 1发布之后却被网友爆料大量翻车现场。目前官方也已承认了Nothing Phone 1 在前摄开孔位置附近出现了坏点或绿晕的问题。但Nothing Phone 1也并非一无是处,著名的 JerryRigEverything 耐用性测试就称其“超级坚固”。
  • 苹果发布2022财年第三财季业绩,营收829.59亿美元 Apple 今日公布了 2022 年第三财季的财务业绩。报告显示,苹果公司第三财季公布收入为 829.59亿美元,去年同期为 814 亿美元,同比增长2%;季度净利润为 194 .4亿美元,去年同期为217 亿美元,同比下降10.6%;其中,iPhone带来的营收406.7亿美元,同比增长3%。
  • 工程师开发出可以看到身体内部的贴纸 麻省理工学院的工程师设计了一种贴片,可以产生身体的超声图像。这种邮票大小的设备贴在皮肤上,可以提供 48 小时内脏器官的连续超声成像。
  • 美国参议院批准价值2460亿美元的芯片法案 美国参议院周三通过立法,以超过 750 亿美元支持国内半导体产业。GlobalFoundries、英特尔、三星代工厂、德州仪器、台积电和其他在美国建立半导体制造设施的公司或将受益。
  • 第三代半导体——碳化硅材料之制程与分析 SiC功率电子是加速电动车时代到来的主要动能。以SiC MOSFET取代目前的Si IGBT,不仅能使电力移转时的能源损耗降低80%以上,同时也可让芯片模块尺寸微缩至原本的1/10,达到延长电动车续航里程及缩短充电时间的功效。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了