广告

有趣的低电感功率总线及其古怪的专利

2020-06-10 09:02:36 Bill Schweber 阅读:
总线必须具有低电阻和低电感,同时还必须有足够的电容以消除电压纹波。不幸的是,因为互连和内部寄生效应,能够满足低电感要求的电容器却无法满足低阻抗要求。要想实现多个相互冲突的目标,除了简单地增加更多体电容外,还可以使用不同的方法来尝试。

在电动车辆和混合动力车辆等应用中,直流电流会随开关频率的提高而不断增大,因而对直流电源总线性能的要求就不仅限于IR压降(即电压降)和散热了。随着设计要求的提高,以及以碳化硅(SiC)和氮化镓(GaN)开关为代表的宽禁带器件(WBG)的日益流行,现在的直流电源总线必须在数百kHz的高频率下保持非常低的电感特性。Bziednc

总线必须具有低电阻和低电感,同时还必须有足够的电容以消除电压纹波。不幸的是,因为互连和内部寄生效应,能够满足低电感要求的电容器却无法满足低阻抗要求。要想实现多个相互冲突的目标,除了简单地增加更多体电容外,还可以使用不同的方法来尝试。Bziednc

最近,桑迪亚国家实验室(Sandia National Laboratories, SNL)的一个团队开发出一种解决这个问题的有趣方法,并申请了专利。想知道“桑迪亚是谁或是什么?”,说来有点复杂。桑迪亚国家实验室是由桑迪亚公司(霍尼韦尔的一个全资子公司)国家技术和工程方案部门管理和运营的,属于美国能源部下属的国家核安全管理局。Bziednc

他们的设计采用类似于PC板的分层结构,两个金属平面中间用聚合物电介质隔开,以提供“平面(planar)”电容,如图1所示。Bziednc

Bziednc

图1:电源总线看起来像一个PC板,但带有聚合物电介质而不是玻璃环氧树脂,因此可以用作平面电容器。(来源:桑迪亚国家实验室)Bziednc

如图2所示,这种基本容抗是通过采用大量(数百个)小型多层陶瓷电容器(MLCC)来提高的,而不是常规的电解电容器或薄膜电容器,它们通过标准PC板通孔在平面之间相互连接。Bziednc

 Bziednc

图2:组装板顶视图和底视图显示出大量MLCC器件,以及一个大型的不间断“接地”平面。(来源:桑迪亚国家实验室)Bziednc

这种方法同时具有电气优势和热管理优势。如此多的电容器散开放置可降低高频电流分量的并联阻抗,而扁平陶瓷电容可以承受更高的温度并促进气流流动。它还有一些其它好处。在现有应用中,正极和负极(通常称为接地)通常使用汇流排,正负极之间间隔很大。当磁场线穿过这个大范围区域时,由于电流环路较大,有效电感也较高。而桑迪亚国家实验室采用的这种平面方法可以减小电流环路面积,从而大大降低了电感。Bziednc

他们开发的原型板使用2盎司的覆面PC板材料,尺寸约为6×11×0.062英寸(150×280×1.6毫米),配有336 0.15 µF / 1000 V MLCC电容(采用X7R电介质并符合AEC–Q200认证,适合汽车应用)。其模型和仿真结果表明,总电容为50.4 µF,足以将纹波保持在100 kHz时的目标值以下。Bziednc

除了大量建模之外,他们还使用阻抗测量仪器在100 Hz至10 MHz范围内测试了该设计方案(如图3),结果与其模型非常吻合。他们还将其结果与丰田普锐斯混合动力车所采用的类似总线模型进行了比较,结果发现他们的总线性能更高、体积更小,并可以承受更高的温度。Bziednc

图3:阻抗与频率关系的测试结果表明,仿真单元和物理单元的性能非常接近,且优于丰田普锐斯采用的总线性能。(来源:桑迪亚国家实验室)Bziednc

那么,这个“低电感直流电源总线”(专利号10,084,310)又是怎么回事呢?该专利涵盖了建模、讨论、分析、设计、构造和测试结果,当然,这些都需要用来解释它们是如何构成低电感电源总线汇流排的。Bziednc

但这些都不是最让我兴奋的地方。我曾经阅读或浏览过许多专利,大部分都相当枯燥,技术性很强。看完那些形式化的章节后,你会发现一些内容丰富的原始资料。简而言之,一般会这样写道:“针对存在的问题,这是我们提出的创新解决方案,它的工作方式和原理是这样的”。好吧,这个专利故事就讲完了。Bziednc

然而,这个专利读起来却更像是市场推广文案或是供应商在EDN上发布的技术文章。前面的很多篇幅都用来讨论市场需求和机遇、不同方法之间的取舍以及类似的考虑,直到最后才谈及创新方案自身的细节。我感到有些困惑,因为我认为专利的发布仅取决于其技术优势,而不是任何市场分析或需求。毕竟,许多专利是授予那些独特的、非显而易见的设计,这些设计一般没有或仅具有极小的商业前景,或只是为防止他人抢先而先下手为强。许多专利设计被束之高阁,有些专利所针对的是已经面市的产品,而另一些则处于沉寂状态(等到有一天其它技术发展起来时它们才变得有价值)。Bziednc

这种专利市场分析和竞争定位是好是坏?我不知道,或许无关紧要。但我真的希望增加这些内容不会成为获得专利的因素,因为这可能会压制一些现在看来毫无用处或不切实际、但将来可能会凸显巨大价值的想法。Bziednc

您是否曾参与过设计、创新或方法的专利申请?你在专利申请材料中解释其市场需求了吗?Bziednc

(原文发表于ASPENCORE旗下EDN姐妹媒体EETimes,参考链接:An Interesting Low-Inductance Power Bus, and Its Slightly Strange Patent,本文同步发表于《电子工程专辑》杂志2020年6月刊,版权所有,禁止转载。)Bziednc

责编:Demi XiaBziednc

Bill Schweber
EE Times/EDN/Planet Analog资深技术编辑。Bill Schweber是一名电子工程师,他撰写了三本关于电子通信系统的教科书,以及数百篇技术文章、意见专栏和产品功能介绍。在过去的职业生涯中,他曾担任多个EE Times子网站的网站管理者以及EDN执行编辑和模拟技术编辑。他在ADI公司负责营销传播工作,因此他在技术公关职能的两个方面都很有经验,既能向媒体展示公司产品、故事和信息,也能作为这些信息的接收者。在担任ADI的marcom职位之前,Bill曾是一名备受尊敬的技术期刊副主编,并曾在其产品营销和应用工程团队工作。在担任这些职务之前,他曾在英斯特朗公司(Instron Corp., )实操模拟和电源电路设计以及用于材料测试机器控制的系统集成。他拥有哥伦比亚大学电子工程学士学位和马萨诸塞大学电子工程硕士学位,是注册专业工程师,并持有高级业余无线电执照。他还在计划编写和介绍了各种工程主题的在线课程,包括MOSFET基础知识,ADC选择和驱动LED。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 如何实现最精确的授时和同步? 在为关键基础设施制定PNT解决方案时,运营商必须做出两个最关键的决策:1) 是否应在架构的每一层上部署弹性、冗余和安全性?2) 应采用哪种安全策略?
  • 纳米技术加持:生物光子学迎接医疗应用前景 本文介绍四个相关用例,说明以激光驱动的生物光子学结合纳米技术的应用如何共同实现更理想的医疗健康效果。
  • 如何在高压应用中利用反相降压-升压拓扑 对于需要生成负电压轨的应用,可以考虑多种拓扑结构,如“生成负电压的艺术”一文所述。但是,如果输入和/或输出端的绝对电压超过24V,并且所需的输出电流可以达到几安,则充电泵和LDO负压稳压器将会因其低电流能力被弃用,而其电磁组件的尺寸,会导致反激式和Ćuk转换器解决方案变得相当复杂。因此,在这种条件下,反相降压-升压拓扑能在高效率和小尺寸之间达成较好的折衷效果。
  • 复旦大学研究人员发明晶圆级硅基二维互补叠层晶体管 复旦大学研究团队将新型二维原子晶体引入传统的硅基芯片制造流程,实现了晶圆级异质CFET技术。相比于硅材料,二维原子晶体的单原子层厚度使其在小尺寸器件中具有优越的短沟道控制能力。
  • 宝马AI“超级大脑”上线,驱动在华数字化发展 近日,宝马率先在华部署了代号为“灯塔”(BEACON)的人工智能(AI)平台,提供AI应用创新相关的开发、部署、集成与运行服务的平台化环境,加速实现多业务场景数字化。
  • 西工大打破吉尼斯世界纪录,扑翼式无人机单次充电飞行15 据西北工业大学官宣其扑翼式无人机单次充电飞行时间获得新的吉尼斯世界纪录,认定的纪录时间为 2 小时 34 分 38 秒 62(突破 154 分钟)。本次刷新世界纪录的“云鸮”扑翼式无人机采用了高升力大推力柔性扑动翼设计、高效仿生驱动系统设计和微型飞控导航一体化集成等关键技术,翼展 1.82m,空载起飞重量为 1kg,手抛起飞,滑翔降落,能够按设定航线自主飞行,飞行过程中能实时变更航线。
  • 电化学腐蚀制备新技术发表,“一步到位”制作电池电极 据了解,天津大学“英才计划”特聘研究员吉科猛团队联合湖南大学谭勇文教授团队利用钴磷合金研发出了仅用一步即可制成电池电极的电化学腐蚀制备技术,该相关研究成果将于近日发表在国际期刊《先进材料》上。
  • 麻省理工开发出纸一样薄的太阳能电池,每公斤功率是传统 麻省理工学院称其工程师开发出超轻织物太阳能电池,可以快速轻松地将任何表面变成电源。这些耐用、灵活的太阳能电池比人的头发丝细得多,粘在坚固、轻便的织物上,使其易于安装在固定表面上。它们的重量是传统太阳能电池板的百分之一,每公斤产生的功率是传统太阳能电池板的18倍。
  • iPhone 15全面升级,Ultra版本或超万元起售 据多方消息,明年苹果将在手机产品线上进行大范围的升级,如今的Pro版将不再是最高端版本,而是将推出一个全新产品iPhone 15 Ultra。
  • 12月13日起通信行程卡服务正式下线 12月12日0时,“通信行程卡”微信公众号发布“关于下线‘通信行程卡’服务的公告”
  • 英特尔展示下一代半导体器件技术,计划2030年实现万亿级 日前,英特尔在IEDM上展示多项与半导体制造技术相关的研究成果:3D封装技术的新进展,可将密度再提升10倍;超越RibbonFET,用于2D晶体管微缩的新材料,包括仅三个原子厚的超薄材料;能效和存储的新可能,以实现更高性能的计算;量子计算的新进展。此外,英特尔表示,目标是在2030年实现在单个封装中集成一万亿个晶体管。
  • 通过GaN电机系统提高机器人的效率和功率密度 机器人应用成功的关键因素之一是确保最佳的电机驱动器设计。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了