广告

超宽带(UWB)技术基础及其测试方法

2021-01-14 阅读:
超宽带(UWB)技术是一种利用纳秒级的窄脉冲进行数据传输的无线通信技术。它既不同于传统的窄带通信技术,也不同于广泛用于宽带通信的OFDM技术,UWB信号的超大带宽和极低功率对测试方法和测试仪表提出了新的需求和挑战

基于IEEE 802.15.4a/f/z标准的UWB(Ultra-wideband)超宽带技术是一种利用纳秒级的窄脉冲进行数据传输的无线通信技术。UWB技术可实现厘米级别的精准位置测量,提供速率高达27 Mbps的安全数据通信,且功耗和延迟非常低,而极高的带宽和极低的功率谱密度可以使其与其他窄带和宽带无线通信系统共享频谱且具备一定的抗干扰性。既不同于传统的窄带通信技术,也不同于广泛用于宽带通信的OFDM技术,UWB信号的超大带宽和极低功率对测试方法和测试仪表提出了新的需求和挑战。FDBednc

如今,UWB技术发展迅速,已经进入消费市场和工业市场,主要针对手机终端、汽车应用、物联网及工业4.0等领域,包括室内定位、移动数据共享、安全支付、资产跟踪、车载定位、无钥匙进入、智能家居和智能工厂等典型用例。FDBednc

UWB定义与标准

参考FCC的定义,满足10 dB带宽(fH - fL) > 500 MHz或者分数带宽2*( fH - fL)/ (fH + fL) > 0.2的信号可以称为UWB超宽带信号(图1),且信号的功率谱密度限制于-41.3 dBm/MHz。FDBednc

图 1: UWB信号定义FDBednc

2002年,FCC允许在非授权频段使用UWB系统用于雷达、公共安全和数据通信的应用。2005年,WiMedia联盟发布了第一个商用UWB标准ECMA-368。2007年至今,UWB技术主要在IEEE 802.15.4标准工作组进行演进。最新的IEEE 802.15.4z标准定义了LRP(Low Rate Pulse)和HRP(High Rate Pulse)两种UWB物理层规范,其中HRP UWB的应用最为广泛。FDBednc

目前,UWB联盟、FiRa联盟和车联网联盟都是推动UWB发展的重要组织。FDBednc

HRP UWB物理层技术

HRP UWB定义了Sub GHz频段、Low Band频段和High Band频段三个频段(表1)。每个频段包含一个强制支持的信道及其他多个可选支持的信道,其中信道4、7、11和15这四个可选信道支持更大的带宽(> 1 GHz),而其余信道的带宽均为499.2 MHz。FDBednc

表1:HRP UWB频段和信道分配FDBednc

HRP UWB PHY帧(PPDU)由前导和数据两部分组成(图2)。前导部分包含同步头(SHR),由同步字段(SYNC)和帧开始分隔符字段(SFD)组成。数据部分包含PHY头(PHR)和PHY有效载荷。FDBednc

图 2:HRP UWB PHY帧结构FDBednc

前导部分的调制采用三元码方式。前导符号Si由三元码序列Ci = {-1, 0, 1}组成,在码符号间插入若干个码片持续时间(图3)。HRP UWB支持的编码序列长度有IEEE 802.15.4-2015定义的31和127,以及IEEE 802.15.4z增加的91。码片持续时间也称为Delta Length,由编码序列长度和信道号决定。FDBednc

图 3:前导符号的结构FDBednc

数据部分的调制结合了突发位置调制(Burst Position Modulation)和二进制相移键控(BPSK),称为BPM-BPSK调制方式(图4)。每个符号由一个突发脉冲组成,包含2比特信息。其中一个比特用来决定突发脉冲的位置,另一个比特决定脉冲调制的相位。标准定义了多种突发脉冲长度来支持多种数据速率。FDBednc

图 4:BPM-BPSK调制方式FDBednc

UWB定位的基本原理是利用TOF(Time of Flight)进行精确测距。在TOF的基础上,采用改进算法,例如TDOA(到达时间差定位),TOA(到达时间定位),TWR(双向测距),AOA(到达角定位),可以对定位性能进一步提升,适应不同的应用场合。FDBednc

图 5:TOF测距法FDBednc

UWB测试项目与方法

UWB测试项目主要来源于802.15.4-2015规范,在协议第16章HRP UWB PHY第四部分中,描述了RF方面的测试要求。主要包括如下的用例 :FDBednc

1) 16.4.5 Baseband impulse response (脉冲响应)FDBednc

2) 16.4.6 Transmit PSD mask(发射频谱模版)FDBednc

3) 16.4.7 Chip rate clock and chip carrier alignment(码片误差)FDBednc

4) 16.4.10 Transmit center frequency tolerance (中心频率误差)FDBednc

5) 16.4.11 Receiver maximum input level of desired signal(接收机电平)FDBednc

针对以上的测试用例需求,罗德与施瓦茨公司提供了一系列的测试方案。以上用例的测试均在R&S CMP200非信令综测仪上实现。FDBednc

在使用R&S CMP200进行射频测试的过程中,发射机测试是通过外部PC软件控制终端发射指定的UWB信号,在固定的频段以及固定的数据格式,R&S CMP200会测量终端发射出来的信号射频指标。接收机测试时R&S CMP200内置的信号发生器,发送指定格式数据包,终端工作在接收机状态,然后汇报接收到的数据包数目以及误包率。FDBednc

同时,R&S CMP200的测量在满足协议测试要求的基础上,还额外增加了一些信号分析内容,满足研发客户进一步需求。例如如下用例:FDBednc

1) Chip/Symbol Clock Jitter AnalysisFDBednc

2) Chip/Symbol Phase Jitter AnalysisFDBednc

3) Chip/Symbol EVMFDBednc

4) Preamble/Data PowerFDBednc

5) Power vs TimeFDBednc

通过以上测试,可以有效的保证UWB模块射频信号质量,改善UWB数据传输性能。FDBednc

本文由罗德与施瓦茨供稿罗德与施瓦茨供稿FDBednc

责编:Amy GuanFDBednc

本文为《电子工程专辑》2021年1月刊杂志文章,版权所有,禁止转载。点击申请免费杂志订阅  FDBednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 在3.3V MCU板上对两种低压电源进行简单廉价的线或处理 当今大多数微控制器(MCU)都采用3.3V或更低的直流电压供电。对于永久使用的情况,设计中通常包括电池和主电源两种电源,并使用线或二极管将它们连接在一起。对早期的设计(通常采用9V或更高的电池电源供电)而言,二极管正向压降(0.6V)不会有什么问题。但是在最新的电路中,即使选择肖特基二极管(0.3V),也不推荐使用这种解决方案。
  • 华为P40下一代P50 Pro新机渲染图曝光 可能你觉得华为被美国封禁缺少芯片之后,接着把荣耀也出售了,是不是手机业务暂停歇菜了?其实,哪怕遇到更大的困难,华为依然在前行,依然在研发手机。最近,有媒体曝光了华为P40的下一代P50 Pro新机的渲染图。
  • 5G毫米波的四大误区 我们知道,5G毫米波存在信号衰耗大、易受阻挡、覆盖距离短的“天然缺点”。而2019年华为推出5G后,高通就毫米波与华为还有过一场口水仗,说华为是“假5G”,那么5G毫米波到底有哪些问题呢?我们来看看5G毫米波的四大误区。
  • 如何有效地检测碳化硅(SiC)二极管? 对于电源开关应用,碳化硅二极管在效率和热性能方面也具备显著的优势。这种器件可以在更高的温度下运行,而温度是改变电子器件工作条件的重要因素。如果采用真正的SiC器件进行真实测试与仿真会更加有趣,这样可以评估仿真器以及SPICE模型的功效和实用性。本文的重点是如何有效地检测Sic MOSFET。
  • 摩擦起电会是能量采集的下一个来源吗? 我们为何不持续寻找一种新的能量采集方式?因为它通常是免费的(忽略前期成本)、方便,并解决了许多实际的安装/更换问题。但是在能量达到可以采集之前,电子和负载方面有两个前端问题需要解决…
  • 那个曾是华为鸿蒙的最强对手,现在怎么样了? 笔者曾在一年前写过一篇:《华为鸿蒙OS最大的劲敌是谁?》,当时,鸿蒙OS(1.0)发布不久,风头无两,不过当时EDN/EETC捕捉到行业内还有一位默默耕耘不出风头的RT-Thread(以下简称RTT),在鸿蒙OS1.0发布之际,RTT装机量已经达到2亿。可是一年之内,鸿蒙OS已经升级到了 2.0,并从微内核转向终端与手机生态,那么,时隔一年之后,RTT怎么样了?还能成为鸿蒙(简称HM)的对手吗?
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了